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A B S T R A C T

A challenge in the control of civil structures exposed to multiple types of hazards is in the tuning of control
parameters to ensure a prescribed level of performance under substantially different excitation dynamics, which
could be considered as largely uncertain. A solution is to leverage data driven control algorithms, which, in their
adaptive formulation, can self-tune to uncertain environments. The authors have recently proposed a new type of
data-driven controller, termed input space dependent controller (ISDC), that has the particularity to adapt its
input space in real-time to identify key measurements that represent the essential dynamics of the system.
Previous studies have focused on time delay formulations, where the adaptive control rule would use time
delayed measurements as inputs. In this configuration, termed variable multi-delay controller (VMDC), the time
delay itself was adaptive, which provided the input space dependence capabilities. However, the size, or em-
bedding dimension, of the input space was kept constant. In this paper, the authors formulate and study a
strategy to also have the embedding dimension vary, therefore providing full adaptive input space capabilities.
This generalization of the ISDC algorithm will allow the controller to adapt to excitations with higher levels of
chaos, such as a seismic event. The performance of ISDC under multi-hazard excitations is first investigated on a
single-degree-of-freedom system and compared with the previously developed and demonstrated VMDC. Results
show that the adaptive embedding dimension provides significantly enhanced mitigation performance. After, the
ISDC performance is assessed on two benchmark buildings equipped with a semi-active friction device and
subjected to non-simultaneous multi-hazard excitations (wind, blast and earthquake). Results are compared with
a sliding mode controller, where the ISDC is shown to provide better mitigation capabilities.

1. Introduction

Motion-based design of civil structures is a design methodology that
consists of sizing structural mass, stiffness, and damping in order to
restrict structural motion within a prescribed level of performance,
while ensuring that structural components meet safety requirements
[1]. The utilization of passive supplemental damping strategies [2–5] to
meet such motion requirements is now widely accepted by the field of
structural engineering. However, a limitation of passive systems is in
their restricted performance bandwidth, which typically makes them
applicable to single types of hazard only. A solution is to employ high-
performance control systems (HPCSs), which include semi-active [6–8],
hybrid [9–11] and active damping systems [12–14], that offer sig-
nificantly higher controllability due to their mechanical or chemical

adaptive capability. HPCS can therefore be used to protect structures
against multiple simultaneous or non-simultaneous types of hazards,
termed multi-hazards. Nevertheless, the performance of HPCS depends
heavily on the design of the controller, which itself relies on the
availability of sensor information and capability of actuation. Chal-
lenges associated with designing controllers for multi-hazards include:
(1) uncertainties and large variabilities in the external excitation dy-
namics; (b) uncertainties in the dynamic properties of controlled
structures; and (c) limited available measurements with non-negligible
probabilities of sensor failure.

To address these multi-hazard control challenges, one can utilize
model driven controllers (MDCs) or data driven controllers (DDCs).
Typical MDCs include linear quadratic regulator (LQR) [15,16] and
nonlinear Lyapunov-based controllers [17,18]. They have shown great
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potential at providing robust mitigation capabilities, but they require
some levels of knowledge about the system, such as the mass and
stiffness parameters. It follows that MDCs may underperform when
dynamic parameters are inaccurate or unknown [19,20]. Conversely,
data-driven approaches rely on implicit information from measure-
ments and do not require knowledge of system dynamics. These
methods have been widely studied and applied in fault detection for
example [21–23]. In the structural control field, typical DDCs include
model-free adaptive controllers [24], fuzzy controllers [25], and neu-
rocontrollers [26–28]. Generally, these controllers require some level of
training through input-output examples, which is difficult to achieve
when a wide range of excitation amplitudes, frequencies, and dynamics
are considered.

Of interest to the authors are time delay controllers of the type
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where u is the control force, y is an observation or input, �∈ ×ν d 1 is
the delay vector constructed from d observations delayed by τ , and gi
and �∈ ×G d 1 are the control gains and the control gain matrix, re-
spectively, where gi is not necessarily a constant and could be obtained
through a function. In work on time delay controllers, Pyragas first
proposed a time delay autosynchronization (TDAS) control for stabi-
lizing periodic orbits of a chaotic system [29], which showed limited
performance for highly unstable periodic orbits. Socolar et al. [30]
overcame this issue by proposing an extended TDAS (ETDAS) for the
stabilization of systems with high frequency chaotic oscillations. While
successful, it was discussed that the ETDAS could be more effective,
because τ was constant and could not be selected appropriately for
unknown systems. Ahlborn and Parlitz [31] proposed a multiple delay
feedback control (MDFC) with two or more numbers of delays d. A good
performance improvement was obtained, but the MDFC introduced a
significant number of control parameters [32]. Instead of a constant
time delay τ , Gjurchinovski and Urumov [33] proposed a variable delay
feedback control (VDFC) for stabilizing unstable steady states. The time
delay τ is varied using a periodic function that oscillates around a
nominal value. A limitation of the VDFC is that the nominal delay value
needs to be pre-selected appropriately. Pyragas et al. [34] proposed an
adaptive delayed feedback control where the time delay can be adapted
continuously by the descent gradient method. The advantage of this
controller is that a knowledge of the system (e.g. period of controlled
orbit) is not required. However, the adaptive time delay method re-
quires an initial time delay that is close to the optimal value [35].

A common feature of those time delay controllers is the reliance on
an offline selection of τ and d. The ability to, instead, select these
parameters online and in real-time would improve the performance of
these controllers by tailoring their input-space to the excitation. In fact,
the architecture of the input-space of DDC is often overlooked [36,37].
For instance, it was demonstrated by Hong et al. [38] that the optimal
values of τ and d merely remains constant throughout a high-rate dy-
namic event. A solution is to allow the input-space of a given DDC to
vary with time. This idea, termed Input Space Dependent Controllers
(ISDCs), was first proposed by Laflamme et al. [39]. The authors pre-
sented a sequential adaptive neurocontroller for which a time-varying
delay vector was used as the input space. Later work in Ref. [40] stu-
died a multi-delay controller based on a time-varying τ selected online,
while d was kept constant. This specialized type of ISDC was termed
Variable Multi-Delay Controller (VMDC). Work included boundaries on
the selection rule to ensure stability. In both cases, the online selection
of parameters was based on the Embedding Theorem [41–43]. The
theorem states that the essential dynamics of a stationary system can be
represented by an optimal delay vector ∗ ∗ ∗ν τ d( , ), where the asterisk
denotes an optimal value. The theorem has been initially developed for
autonomous systems [41], and applied in many fields such as system
identification and model prediction. See Refs. [44–46] for instance.

In this paper, we present a general formulation of the ISDC, which
includes an online selection strategy for both τ and d. Unlike prior work
from the authors in Ref. [39], the controller is based on a simple time
delay formulation as shown in Eq. (1) where gi are constants, in order
for the focus to be on the selection of the input space itself. Unlike the
work in Ref. [40], the embedding dimension d in this paper is also al-
lowed to vary. It follows that, by varying both τ and d, the ISDC
identifies in real time the essential dynamics found in the input space
(from measurements) produced by different or combined hazards, and
adapt its architecture accordingly for enhanced mitigation capabilities.
Therefore, the ISDC can adapt to unknown excitation dynamics, in-
cluding nonstationary systems, using local and limited measurements
only enabling implementations through either wired or wireless com-
munication protocols [47,48]. Note that due to its simple time delay
formulation and limited dimensionality, the ISDC is computational ef-
ficient and can be used in real time, as demonstrated in prior work
[39,40].

The upcoming section provides the background on the Embedding
Theorem. The subsequent section presents the ISDC algorithm, which
includes the adaptive rules for the control gains, and the time delay and
embedding dimension selection rules. This is followed by studies of
ISDC in a single-degree-of-freedom (SDOF) system to evaluate its per-
formance under non-simultaneous multi-hazards excitations. The per-
formance of the ISDC is compared with the previously developed
VMDC. After, the ISDC is further evaluated on two benchmark buildings
equipped with semi-active damping devices subjected to multi-hazard
excitations. The results are summarized in the last section.

2. Background

This section introduces the Embedding Theorem that constitutes the
basis of the ISDC, and presents the online adaptation rules for τ and d.

2.1. Embedding Theorem

Consider a SDOF system of the type

+ + = + −mx t cx t kx t u t f t ma t¨ ( ) ̇ ( ) ( ) ( ) ( ) ( )g (2)

where m c, , and k are the system’s mass, damping, and stiffness, re-
spectively, x t( ) is the displacement state, the dots represent time deri-
vatives, u t( ) is the control force from Eq. (1), f t( ) is an external
loading, and a t( )g is ground acceleration, as illustrated in Fig. 1. For
simplicity, the observation feedback y t( ) (Eq. (1)) is taken as the dis-
placement state ( =y t x t( ) ( )). Assuming stationary inputs u f, , and ag,
the Embedding Theorem states that the unknown system (Eq. (2)) can
be topologically reconstructed from a properly formulated delay vector

∗ν t( )
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where ∗ν t( ) preserves all of the system’s essential dynamics or topology.
In other words, there exists a one-to-one (diffeomorphic) map between

Fig. 1. SDOF system.
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