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a b s t r a c t 

Logistic volatility is a significant contributor to supply chain inefficiency. In this paper we investigate 

the amplification of order and inventory fluctuations in a state-space supply chain model with stochas- 

tic lead-time, general auto-correlated demand and a proportional order-up-to replenishment policy. We 

identify the exact distribution functions of the orders and the inventory levels. We give conditions for 

the ability of proportional control mechanism to simultaneously reduce inventory and order variances. 

For AR(2) and ARMA(1,1) demand, we show that both variances can be lowered together under the pro- 

portional order-up-to policy. Simulation with real demand and lead-time data also confirms a cost benefit 

exists. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

We investigate the performance of the order-up-to (OUT) and 

proportional order-up-to (POUT) inventory control policies via the 

variance of the inventory and orders under a stochastic lead-time. 

Variability in inventory systems is commonly generated by uncer- 

tainties in demand, supply, transportation, and manufacturing. This 

variability can be amplified by poorly designed replenishment poli- 

cies ( Chen, Dresner, Ryan, & Simchi-Levi, 20 0 0; Lee, Padmanabhan, 

& Whang, 1997 ). Fluctuations in the replenishment orders and in- 

ventory levels pose an operational threat to companies. High or- 

der variance (a.k.a. the bullwhip effect) brings uncertainty to the 

upstream supplier, and reduces supply chain efficiency. Similarly, 

high inventory variance results in high safety stock levels and/or 

poor customer service, which in turn leads to inflated inventory 

cost. 

Logistics uncertainty and stochastic shipping delays are a ma- 

jor component of supply chain risk. In recent years, production 

and distribution systems have become increasingly global, expos- 

ing supply chains to more volatility than ever before. Global trans- 

portation routes, involving air, truck, rail and ocean freight modes, 

have long and variable lead-times, due to external factors such as 

seasonality effects, security and customs delays and slow steam- 

ing. Uncertain lead-times sometimes trigger another effect called 
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order crossover , where replenishments are received in a different 

sequence than they were ordered. Whilst these two concepts do 

not necessarily imply each other ( Riezebos, 2006; Zipkin, 1986 ), a 

highly variable lead-time often results in order crossover. This is 

especially so in global supply chains where container liners may 

take different routes, overtake each other at sea, and stop at differ- 

ent ports along the way. Furthermore, individual containers may 

be held up for customs inspections at national borders. 

Hayya, Bagchi, Kim, and Sun (2008) classified the research on 

stochastic lead-time into three schools: the Hadley–Whitin School 

( Hadley & Whitin, 1963 ), which assumes that the probability of or- 

der crossover is so small that it can be totally ignored; the Zipkin–

Song School ( Song, 1994; Zipkin, 1986 ), which assumes that goods 

are processed sequentially (perhaps in some sort of first-in-first- 

out queue) so that order crossover cannot happen; and the Zalkind 

School ( Bradley & Robinson, 2005; Robinson, Bradley, & Thomas, 

2001; Zalkind, 1978 ), which takes order crossover into account and 

discovers that inventory cost and safety stock can be reduced by 

considering this effect. Models of this kind are first introduced by 

Finch (1961) and Agin (1966) , which gave the correct expression 

for the distribution of the number of outstanding orders. Zalkind 

(1978) determined the optimal target inventory level to minimize 

total cost. Bagchi, Hayya, and Chu (1986) showed the importance 

of considering order crossover when setting safety stock. Robinson 

et al. (2001) highlighted that order crossover has a significant im- 

pact on inventory control and should not be ignored. The aims of 

these studies are either to derive (approximate) relevant distribu- 

tions or to decide safety stock parameters. 
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In recent years the impact of order cross-over on inventory 

management is gaining academic attention. Chatfield, Kim, Har- 

rison, and Hayya (2004) and Kim, Chatfield, Harrison, and Hayya 

(2006) have investigated the bullwhip effect with stochastic 

lead-time, adopting the assumptions of i.i.d. demand and the OUT 

replenishment policy. Hayya, Harrison, and Chatfield (2008) con- 

sidered the inventory cost optimization problem under order 

crossover using regression on empirical data. Hayya, Harrison, 

and He (2011) further studied the impact of order-crossover on 

inventory cost, assuming deterministic demand and exponentially 

distributed lead-time. Bischak, Robb, Silver, and J.D. (2014) showed 

that taking into account order crossover and using an approximate 

effective lead-time deviation allows companies to reduce inventory 

costs. 

Another stream of research has shown that the POUT policy is 

effective at smoothing the bullwhip effect at a cost of increased 

inventory variability ( Chen & Disney, 20 07; Gaalman, 20 06 ). How- 

ever, most studies on bullwhip effect require at least a predictable, 

if not a constant, lead-time; while existing research on stochastic 

lead-time problems do not explicitly tackle the amplification prob- 

lem. Disney, Maltz, Wang, and Warburton (2016) tried to fill this 

gap by considering an inventory system with stochastic lead-time 

and order-crossover. They derived the distribution of orders and in- 

ventory under stochastic lead-time and discussed the impact of the 

proportional OUT policy on costs and safety stocks. However, the 

demand pattern is restricted to i.i.d. and no formal proof is given 

for the superiority of the POUT policy over the OUT policy. 

This paper is a sequel to Disney et al. (2016) in which we ex- 

tend, sharpen and refine their results in the following ways: (1) we 

identify the distributions of order and inventory under stochastic 

lead-time and auto-correlated demand; (2) we provide conditions 

when the OUT and POUT policies minimizes inventory variability 

under the ARMA( p , q ) demand process; (3) we examine the possi- 

bility of simultaneous reduction of inventory and order variances 

by proportional control. Below we list our contributions in more 

detail. 

• We develop a state space approach which allows us to derive 

the probability density functions of orders and inventory under 

the POUT policy, arbitrarily distributed stochastic lead-time and 

general ARMA( p , q ) demand. The pdfs then allows us to derive 

exact expressions for the inventory and order variances. 
• We give a necessary condition for when the OUT policy mini- 

mizes the inventory variance under general ARMA demand and 

a stochastic lead-time. Based on this condition we prove that 

the OUT policy is never optimal for minimizing inventory vari- 

ance when order crossover is present and demand is temporally 

independent. 
• We give a precise condition under which the inventory and or- 

der variances can be reduced simultaneously by optimizing the 

proportional controller in the POUT policy. Parametrical combi- 

nations for this condition are derived for special cases of AR(2) 

and ARMA(1,1) demand. Simultaneous reduction of inventory 

and order variance via proportional control is possible for the 

majority of demand processes. 

The paper is organized as follows. In Section 2 we introduce 

notation and modeling basics. Section 3 contains the main results, 

which includes an exact approach to obtain the distribution of or- 

der and inventory, conditions for the optimality of the OUT policy, 

and conditions for the simultaneous improvement of inventory and 

order variances. In Section 4 we numerically investigate the impact 

of demand correlation and lead-time uncertainty. The cost impli- 

cations of the proportional policy are also provided based on real 

demand and lead-time data. Finally we conclude and discuss our 

results in Section 5 . Proofs that are not outlined in the main text 

are presented in the Appendix A . 

Table 1 

Commonly used notation in this paper. 

Variables (time-dependent random processes) 

y t , z t Variables in the ARMA model 

ε t Gaussian i.i.d. variable with zero mean and unit variance 

d t Demand 
ˆ d t Demand forecast 
ˆ D t Lead-time demand forecast 

S t Order-up-to level 

o t Order 

i t Net inventory level 

w t Work-in-process 

IP t Inventory position, IP t = i t + w t 

ξ t Pipeline Status 

x t ( ξ ) Sub-process of { x t } with pipeline status ξ

Parameters (constant) 

φ, θ Auto-correlation and moving average parameters in the 

ARMA demand model 

ss Safety stock level 

1 − λ Proportional feedback controller 

L + , L − Maximum and minimum lead-time 

h , b Unit holding and backlog cost 

First-order moment 

E( x ), μx Expectation of x 

E( x ; ξ ) Expectation of x t ( ξ ) 

Second-order moments 

�xy ( τ ) Mutual covariance function between x and y with time 

difference τ

�xx (0), �xx Autocovariance matrix of x 

�xy (0; ξ ) Mutual covariance between x t ( ξ ) and y t ( ξ ) 

Probabilities and distribution functions 

p L Probability of lead-time being L periods long 

ψ x ( ·) Probability density function of x 


x ( ·) Cumulative distribution function of x 


̄x (·) Complementary cumulative distribution function of x 

ϕ( x | μ, σ 2 ) Probability density function of normal distributed variable 

x with mean μ and variance σ 2 

Matrices 

I Appropriately dimensioned identity matrix 

1 Appropriately dimensioned unit column vector 

A T Transpose of A 

A −1 Inverse of A 

diag{ ���} Block-diagonal matrix 

2. Modeling the demand and ordering policy 

In this section we establish the model including the objective 

function, demand process, forecasting and inventory control poli- 

cies, sequence of events, and the balance equations. We focus on 

a periodic review inventory system where the system states are 

defined on R . The lead-time, defined on N 

+ , is a positive random 

variable following any arbitrary non-negative discrete distribution 

that is independent over time. The assumption of discrete lead- 

time is natural as the lead-time is measured in units of the review 

period in periodic systems ( Disney et al., 2016 ). Since our model 

allows for order crossovers, there are no restrictions on the lead- 

times of consecutive orders. The demand is a normally distributed 

ARMA( p , q ) process. Both the lead-time distribution and demand 

correlation are known in advance. In practice this knowledge can 

be realized by statistically analyzing historical data. 

Table 1 lists commonly used notation. Importantly we denote 

�xy ( τ ) as the mutual covariance function between the random 

variables x and y , with time difference τ . E( x ) or μx is the ex- 

pectation of x . Variables x and y don’t have to be scalars. If x and 

y are vectors and each contains m and n scalar random variables 

respectively, �xy ( τ ) is an m × n matrix and E( x ) is a 1 × m vec- 

tor. When τ = 0 , �xx (0) is the autocovariance matrix of x . Some- 

times we write this as �xx if no other confusion would occur. The 
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