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a  b  s  t  r  a  c  t

Brain–computer  interfaces  (BCI)  rely  on  classification  algorithms  to detect  the  patterns  of  the brain  sig-
nals  that encode  the  mental  task  performed  by  the  user. Therefore,  robust  and  reliable  classification
techniques  should  be developed  and  evaluated  to  recognize  the  user’s  mental  task  with  high  accuracy.
This  paper  proposes  the  use  of the  novel  dendrite  morphological  neural  networks  (DMNN)  for  the recogni-
tion  of  voluntary  movements  from  electroencephalographic  (EEG)  signals.  This  technique  was  evaluated
with  two  studies.  The  first  aimed  to  evaluate  the  performance  of DMNN  in  the  recognition  of  motor  exe-
cution  and  motor  imagery  tasks  and  to  carry  out  a systematic  comparison  with  support  vector  machine
(SVM)  and  linear  discriminant  analysis  (LDA)  which  are the  two  classifiers  mostly  used  in  BCI  systems.
EEG  signals  from  twelve  healthy  students  were  recorded  during  a cue-based  hand  motor  execution  and
imagery  experiment.  The  results  showed  that  DMNN  provided  decoding  accuracies  of 80%  for  motor
execution  and  77%  for motor  imagery,  which  were  significantly  different  than  the  chance  level  (p <  0.05,
Wilcoxon  signed-rank  test)  and higher  when  compared  with  classifiers  commonly  used  in BCI.  The sec-
ond  study  aimed  to  employ  the DMNN  to recognize  the  intention  of  movement.  To  this  end,  EEG  signals
were  recorded  from  eighteen  healthy  subjects  performing  self-paced  reaching  movements  and  several
classification  scenarios  were  evaluated.  The  results  showed  that  DMNN  provided  decoding  accuracies
above  chance  level,  whereby,  it  is able  to detect  a movement  prior  its  execution.  On  the  basis  of  these
results,  DMNN  is  a powerful  promising  classification  technique  that  can  be used  to  enhance  performance
in  the  recognition  of motor  tasks  for BCI  systems  based  on electroencephalographic  signals.

©  2018  Elsevier  Ltd.  All  rights  reserved.

1. Introduction

Brain–computer interfaces (BCI) have emerged as a new alter-
native to provide people suffering partial or complete motor
impairments, with a non-muscular communication channel to
convey messages or commands to the external world [1,2]. Con-
sequently, these systems can help to improve the user’s quality of
life giving more independence and autonomy while constituting
a novel research tool for understanding the brain. A BCI relies in
the recording and processing the brain activity in order to obtain
control signals or commands that are used to drive an external
application [3,4], for instance, computer-based spellers [5], robotic

∗ Corresponding author.
E-mail addresses: mauricio.antelis@itesm.mx (J.M. Antelis),

bereniceg@itesm.mx (B. Gudiño-Mendoza), luis.eduardo.falcon@itesm.mx
(L.E. Falcón), gildardo.sanchez@upy.edu.mx (G. Sanchez-Ante), hsossa@cic.ipn.mx
(H. Sossa).

wheelchairs [6], robotic arms [7], teleoperated mobile robots [8],
games [9] or virtual environments [10]. The two basic elements in
a BCI are the mental task performed by the user and the record-
ing of the brain activity. On the one hand, the user’s mental task
is a specific mental action without physical output which induces
recognizable patterns on the brain signals. The most common are
selective attention (e.g. visual P300 potentials [11] or steady-state
visual evoked potentials [12]), motor imagery of different parts
of the body (e.g. event-related desynchronization/synchronization
[13]) and self regulation of slow brain potentials (e.g. slow corti-
cal potentials [14]). On the other hand, the brain activity can be
acquired with invasive or non-invasive techniques. Invasive meth-
ods measure the electrical activity from electrodes placed in the
brain tissue, therefore, they offer good signal-to-noise ratio, spatial
selectivity, and a large bandwidth but they require surgery. Non-
invasive methods on the other hand measure the electromagnetic
or metabolic brain activity with sensors located outside the head.
The most used technique for the recording of the brain activity in
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BCI systems is the non-invasive electroencephalogram (EEG) as it
is inexpensive, innocuous and provides high temporal resolution
brain signals [15].

The key in an EEG-based BCI is the recognition of the changes or
patterns of the brain signals that are induced by the mental task,
which is carried out by means of classification algorithms [16,17].
In order to perform this, the EEG-based BCI typically operates in
cue-based synchronous protocols [18]. For example, in a motor
imagery mental (MI) task the user imagines the movement of a
limb during a well-establish period of time while the EEG activity
is recorded [19]. After the MI  is finished, a set of attributes (based
on the power spectral [20,21] or common spatial patterns [22–24])
is computed from the recorded EEG signals which are provided to
a classification algorithm to recognize the moved limb. Finally, the
classifier output is used as a command in an application. Note that
the accuracy in the recognition of mental tasks relies considerably
on the classification algorithm. Hence, the application of BCI tech-
nologies in real situations and daily life activities with real users, i.e.,
patients with reduced communication and mobility, might benefit
from novel and different classification algorithms [25]. In addition
to this, synchronous BCIs requires a few seconds to collect brain
signals while the user is carrying out the mental task. After this, the
system recognizes the mental task, which takes a few milliseconds.
Therefore, the user first performs the mental task and after it is fin-
ished the output command is generated, as a consequence, there
is a noticeable time interval since the initiation of the mental task
and the response produced in the application, which makes that
output movements are not seen natural by the user.

To address these issues, we propose the use of dendrite mor-
phological neural networks (DMNN) to recognize motor tasks
directly from EEG signals. The novelty in the DMNN relies upon
its architecture, which incorporates dendrites in the model of the
artificial neural networks [26,27]. The processing in the dendrites
allows to obtain closed separation surfaces offering higher clas-
sification accuracies. This novel classification method has been
recently applied in the diagnosis of diseases using biomedical
images [28,29], however, it has not been applied to the problem of
recognizing motor tasks from EEG signals. This might suggest that
DMNN can also be a good alternative in the context of BCI systems.
Therefore, here we investigated the recognition of motor execu-
tion, motor imagery and motor intention using EEG brain signals
recorded in BCI settings.

This work consists of two experimental studies. The first study
evaluates the performance of DMNN in the recognition of motor
tasks from EEG signals recorded in a classical cue-based syn-
chronous BCI experiment and presents a systematic evaluation to
compare its performance with Fisher Linear Discriminant Analy-
sis (FLDA) and support vector machines (SVM). EEG signals were
obtained from twelve participants performing hand motor execu-
tion and motor imagery which were used to evaluate the two-class
classification scenarios relax versus motor execution and relax versus
motor imagery. The results showed that the proposed DMNN pro-
vided classification rates that were significantly different and
higher than the chance level. In addition, DMNN yielded on average
a classification accuracy of 80% and 77% in the two  classification
scenarios, which were higher than the accuracies achieved with
FLDA and SVM. The second study applies the DMNN for the recog-
nition of motor tasks from EEG signals recorded in an asynchronous
BCI experiment. To do so, EEG signals were recorded from eigh-
teen healthy subjects performing self-paced reaching movements
and the DMNN classification algorithm was applied to recognize
between movement states in the following two-class classification
scenarios, relax versus intention, relax versus execution and inten-
tion versus execution. The results showed that the DMNN provided
on average classification accuracies of 65, 69 and 77% respec-
tively, moreover, classification rates were significantly different

and higher than the chance level. These studies and their results
extend those presented in [30,31]. First, a detailed description of
the architecture, training procedure and classification process of
the DMNN is presented. Second, a more elaborate analysis of the
DMNN performance in the recognition of motor execution and
motor imagery tasks using brain signals along with a systematic
evaluation to compare performance with other classification algo-
rithms is presented. Third, the recognition of motor intention using
brain signals is studied with the DMNN over a much greater set of
participants with a deeper evaluation process that includes more
classification scenarios and significance tests.

This work contributes in two  aspects. First, it is demonstrated
that DMNN is a powerful classification model to recognize motor
execution and motor imagery tasks from EEG signals, whereby, it
can be incorporated as a novel neural decoder in synchronous BCI
systems. Second, DMNN is successfully applied to recognize the
intention to move a limb from EEG signals acquired in self-paced
reaching movements, which is an important feature to attain BCI
technologies with a reduced delay between the mental task and the
system output. The rest of the work is organized as follows. Section
2 presents the technical details of the DMNN classification algo-
rithm. Section 3 describes the two studies designed and executed
to evaluate the DMNN algorithm in the classification of motor tasks
from EEG signals and to compare its performance with other classi-
fiers. Section 4 presents the results of the two experimental studies.
Sections 5 and 6 discuss the results and presents the conclusions,
respectively.

2. Dendrite morphological neural networks (DMNN)

The most common classification models used in EEG-based BCI
are Fisher Linear Discriminant Analysis or FLDA and support vec-
tor machines or SVM [16,32]. These classifiers learn a discriminant
function [33] whose effect is to establish linear or non-linear sep-
aration surfaces [34,35]; however, the regions created by such
discriminant function are not closed and may  include examples
from different classes. To produce closed separation surfaces to
discriminate data from different classes, novel artificial neural
networks (ANN) such as dendrite morphological neural networks
(DMNN) have been proposed [27,26]. The novelty in these models
is the incorporation of a computational structure in the dendrites
of the neurons [36]. This is important because dendrites are rele-
vant computational units in a biological neuron, but they have not
been considered in most of the current models of ANN [37]. The
use of dendrites in the neural network model has several proper-
ties [38], first, no hidden layers are required as the processing of
information is performed in the dendrites, second, produces closed
separation surfaces between classes, thus, it offers a different solu-
tion for multi-class classification problems.

2.1. Architecture

The architecture of a DMNN is illustrated in Fig. 1. The model
consists of n input neurons (number of attributes), m class neurons
(number of classes) and a selection unit (final output). All input neu-
rons are connected to each class neuron through d dendrites D1, . . .,
Dd. Note that each input neuron has at most two  weighted connec-
tions on a given dendrite, one excitatory and other inhibitory, which
are represented as black and white dots, respectively. The weights
between neuron Ni and dendrite Dk in the class neuron Mj are
denoted by ωl

ijk
, where l = 1 represents excitatory input while l = 0

represents inhibitory input. The value of these weights is unknown
and has to be learned from a training dataset. The output of den-
drite Dk in the class neuron Mj is �j

k
(x), which depends on the vector

of attributes and the weights. Each class neuron provides an out-
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