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A B S T R A C T

Invasive species managers must decide how best to allocate surveillance and control effort through space. Doing
this requires the predicted location of the invasive species, and these predictions come with uncertainty. While
optimal surveillance designs have been developed for many invasive species, few have considered uncertainty in
species distribution and abundance. Adaptive management has long been recommended for managing natural
systems under uncertainty, but has not yet been applied to searching for invasive species. We investigate
whether an adaptive management approach can increase the number of individuals found and removed, as
compared to a naïve allocation of search effort or “common sense” rules of thumb. We develop a simple illus-
trative model where search effort must be allocated to maximise plant removals across two sites in which species
abundance is unknown. We tested the performance of both passive and active adaptive strategies through si-
mulation. There are substantial benefits to employing an adaptive strategy, although the two forms of adaptive
management performed similarly. The optimal active adaptive strategy is complex to calculate, whereas the
passive strategy could be calculated for a large number of sites using widely accessible spreadsheet software. We
therefore recommend the passive adaptive strategy for achieving approximately the same outcome while being
much more practical to implement, facilitating application to much larger and more realistic search problems in
a way that is accessible to managers.

1. Introduction

A primary concern for invasive species managers is how best to
allocate surveillance and control effort through space (Chadès et al.,
2011; Epanchin-Niell et al., 2012; Hauser and McCarthy, 2009; Regan
et al., 2011). Achieving this requires the predicted location of the in-
vasive species, now and/or in the future. Expert opinion (Williams
et al., 2008), species distribution models that correlate occurrence with
environmental attributes (Elith et al., 2010; Guisan et al., 2013), or
other spatial population and spread models (Adams et al., 2015; Caplat
et al., 2012; Coutts et al., 2011; Gallien et al., 2010) can provide these
predictions.

However these predictions are made, they will come with some
uncertainty. Expert judgements can be biased, although bias can be
minimised by using structured elicitation processes (Martin et al., 2012;
Sutherland and Burgman, 2015). Predictive models are simplifications
that will imperfectly represent biological relationships (Levins, 1966).
In addition, imperfect detection means that occupancy or abundance

cannot be known perfectly, even if a landscape were comprehensively
surveyed (Chen et al., 2013; Garrard et al., 2008; MacKenzie and
Kendall, 2002; Moore et al., 2011; Royle et al., 2005). If we ignore this
uncertainty and treat our point predictions as the true species dis-
tribution, our survey designs may be suboptimal. This increases the risk
of missing infestations where they occur, and applying excessive effort
where they do not.

While optimal surveillance designs have been developed for a wide
range of species invasions, few consider uncertainty in species dis-
tribution and abundance. Methods for optimally allocating search effort
generally assume that occurrence probabilities are accurately predicted
by models (Chadès et al., 2011; Hauser and McCarthy, 2009; Regan
et al., 2011) or species abundance is uniform across the landscape
(Epanchin-Niell et al., 2012; Rout et al., 2014; Rout et al., 2011). Al-
ternatively, search effort can be allocated to maximise the probability
of achieving an acceptable outcome in the face of uncertainty
(McCarthy et al., 2010). None of these approaches aim to reduce un-
certainty about abundance in different locations. A notable exception is
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Baxter and Possingham (2011), who modelled the Receiver Operating
Characteristic curve of an uncertain distribution map and calculated the
trade-off between searching for the species and reducing uncertainty in
the distribution map. They found that under long management time
frames, initial investment in learning about species distribution in-
creased the likelihood of eradication. Acknowledging and planning for
uncertainty in distribution and abundance when designing surveys can,
therefore, improve invasive species management outcomes.

Adaptive management is a solution to the problem of managing
systems under uncertainty (Parma et al., 1998). This approach to
management not only acknowledges uncertainty and its effect on de-
cision-making, but also seizes opportunities to reduce this uncertainty
(Walters, 1986). The two types of adaptive management, passive and
active, both use the information learned through management to im-
prove future decision-making. Active adaptive management involves
planning ahead for future learning opportunities, and may involve de-
cisions that sacrifice current management performance in return for
information that will improve management performance in the future
(Williams, 2001). In contrast, passive adaptive management takes the
best action at each time point given the current state of knowledge,
updating that knowledge after the results of the action are observed.

Optimal adaptive management theory has been applied to har-
vesting of fish (Walters, 1981; Walters et al., 1993; Walters and Hilborn,
1976) and waterfowl (Nichols et al., 1995; Williams and Johnson,
1995), vegetation restoration (McCarthy and Possingham, 2007), re-
introduction (McCarthy et al., 2012; Rout et al., 2009), metapopulation
management (Southwell et al., 2016), and threatened species man-
agement (Chadès et al., 2012; Moore and Conroy, 2006). While it is
potentially useful for invasive species management (Shea et al., 2002),
there have been no applications thus far.

This paper investigates whether adaptive management is a useful
approach for spatially allocating search and management effort for
invasive species under uncertainty. We outline a simple illustrative
problem of allocating effort between two sites of uncertain habitat
suitability for a species, with the aim of finding and removing as many
individuals as possible. Searching a site not only finds individuals, but
also increases confidence in estimates of total abundance at that site,
which should in turn improve future allocation decisions. Although
searching for invasive plants usually occurs across a much greater
number of sites, condensing this to the simplest two-site problem is
necessary to find the optimal active adaptive management strategy. We
investigate the extent to which active and passive adaptive manage-
ment approaches can increase the number of individuals found and
removed, as compared to a naïve allocation or common sense rules of
thumb. We then discuss the implications for landscape-scale search and
removal of invasive plants.

2. Material and methods

2.1. Optimisation framework

We considered two sites to be surveyed for a plant population.
Across a series of T surveys, a searcher aims to find as many plants as
possible. However, the abundance of plants in each site i is unknown,
and could be between 0 and Ni

max individuals. We developed an opti-
misation model to find the best way to allocate search effort between
the two sites.

Each survey (t = 1, …, T) has a budget of effort Bt to be allocated
between the sites. The decision variable is the amount of effort allo-
cated to site 1 (x1,t), with the remainder allocated to site 2 (x2,t). The
effort allocated to site i will determine the probability of detecting each
individual in that site:
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λ x
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where λi is the detection rate at site i. The probability of detection is the

same for each individual in a site, and is independent of the detection
(or non-detection) of other individuals in space and time. This ex-
ponential detection-effort curve is based on predictions from search
theory (Frost and Stone, 1998), assuming that individuals are dis-
tributed throughout the sites and are encountered randomly. (If in-
dividuals are clustered, detection rates can increase with abundance
(McCarthy et al., 2013)). This functional form is supported by the few
studies that have measured the detection-effort relationship in the field
(Chen et al., 2009; Garrard et al., 2008; Moore et al., 2011).

We assume that surveys are carried out close enough in time that
there is no reproduction or mortality; thus only the detection and re-
moval of individuals affects the plant abundance in each site. The
number of plants newly found in site i during survey t (ci,t) can be used
to estimate the number of plants in each site before surveys began
(Ni,0). The number of undetected individuals remaining after survey t
(Ni,t) can then be estimated from the estimate of Ni,0 and the number of
individuals found. Found individuals are marked and/or removed and
thus do not contribute to detections in future surveys.

Before surveys begin, we assume that our prior belief regarding
plant abundance at site i follows the distribution:
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where parameters αi and βi determine the shape of the distribution.
Parameter αi ≥ 0 is a counting number and is measured on the same
scale as plant abundance; it is indicative of the distribution's centre of
mass. Parameter βi ≥ 0 is any positive real number and is measured on
the scale of search effort. When αi = βi = 0 we recover a discrete
uniform distribution over n = 0, 1, 2, …, Ni

max.
We can update our understanding of plant abundance after each

survey using effort data (xi,j, j = 1, 2,…, t), detection data (ci,j, j= 1, 2,
…, t) and Bayes' theorem. At any time t, the number of plants detected
ci,t is drawn from a binomial distribution with probability of success pi,t
(Eq. (1)) and number of trials − ∑ =

−N ci j
t

i j,0 1
1

, (i.e. the number of plants
not yet detected and removed from the site).

We find that after survey t, the posterior probability distribution for
the initial plant abundance in site i is given by:
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where = ∑ =C ci t j
t

i j, 1 , is the total number of plants found in site i across

the first t surveys, and = ∑ =X xi t j
t

i j, 1 , is the total time spent searching
site i (see Appendix A for derivation). The probability distribution for
the number of undetected plants remaining in site i after survey t is
then:
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(see Appendix A for derivation). We can then calculate the expected
number of undetected plants remaining in site i after survey t as:
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Passive adaptive management aims to maximise expected perfor-
mance given current levels of uncertainty, while active adaptive man-
agement aims to maximise long-term performance while acknowl-
edging changes in uncertainty. Active adaptive management can
therefore involve sacrificing short-term performance to gain
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