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a b s t r a c t 

Resonances generate complicated bifurcation sequences. To design a picture of the bifurcation sequence 

occurring in the presence of a particular strong resonance, the two-parameters bifurcation of the equi- 

librium of a monopoly model with gradient adjustment mechanism and log-concave demand function 

is analyzed. Locally, the equilibrium may be destabilized through a period doubling or a supercritical 

Neimark–Sacker bifurcation. From a global perspective, it is also shown that the model undergoes strong 

resonances, such as the resonance 1:4, by using a continuation procedure. One of the interesting issue to 

tackle for this resonance is the investigation of the heteroclinic bifurcations which occur when pairs of 

saddles form connections near the 1:4 resonance. Therefore, the global analysis, through the description 

of the phase portraits and the basins of attractions, illustrates the theoretical features associated with the 

resonance and display interesting and complex dynamical behaviors, like the emergence of square and 

clover orbits. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

The rapid development of nonlinear science has greatly pro- 

moted the progress in many fields of natural and social disciplines. 

Nonlinear science has helped to discover and to explain a lot 

of new phenomena, regulations and inherent complexities in na- 

ture and society. During the last decades, the bifurcation problems 

for dynamical systems have been widely investigated, especially 

for several models that found applications in various fields like 

physics, biology, neuroscience, economics, engineering, etc. (see 

e.g. [1–4] among others for applications to several research fields 

and [5–11] for a specific focus to economic applications). Gen- 

erally, these models involve several parameters, but most of the 

times the bifurcation phenomena are studied as one systemic pa- 

rameter varies. That is, one-parameter bifurcations are considered. 

Nonetheless complicated bifurcation structures are likely to take 

place when more than one parameter of the system is varied at the 

same time. In particular, if some of the non-degeneracy conditions 

for the one-parameter bifurcations were violated, two-parameters 

bifurcations may also occur. Various types of two-parameter bifur- 

cations have been studied in [12–15] , just to cite a few. A peculiar 

aspect in the occurrence of two-parameters bifurcations is related 

to the existence of strong resonances at which a closed invariant 

curve might appear in a very peculiar way, or there might be sev- 

eral invariant curves bifurcating from the fixed point. In fact, a 

Neimark–Sacker bifurcation may take place in resonant cases when 
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the value of a complex eigenvalue λ1 ( ε) of a discrete time sys- 

tem at the bifurcation point ε is one of the roots of the equation 

λn 
1 
(ε) = 1 , n = 1 , 2 , 3 , 4 . 

One of the most intriguing problem in nonlinear dynamical sys- 

tems (see [27] ) is the bifurcation analysis of the orbits near the 1:4 

resonance. Several authors analyzed this bifurcation issue, showing 

rich and various bifurcation situations with complicated and dif- 

ferent phase portraits, including precisely homoclinic and hetero- 

clinic connections of different types (see [16–18] among others). It 

is worth to point out that homoclinic and heteroclinic orbits are of 

great importance from applied viewpoints (see e.g. [19] ). In gen- 

eral, two types of heteroclinic bifurcation of dimension one occur 

near the 1:4 resonance, the square and the clover connections, the 

former leaving the attracting cycle outside the connection, while 

the latter surrounding the stable cycle. 

The main purpose of the present paper is to discuss and ana- 

lyze the bifurcation structures of a two-dimensional discrete time 

monopoly model. It describes the behavior of a boundedly ratio- 

nal monopolistic firm which faces an inverse demand function and 

owns constant marginal costs. Since the monopolist does not have 

a full knowledge of demand, a myopic quantity adjustment mech- 

anism is adopted, in the sense that she/he increases/decreases its 

own output according to the information given by the marginal 

profit. 

The analysis is carried on by numerical techniques and a con- 

tinuation procedure, which allow us to detect the presence of a 1:4 

resonance within the monopoly model under scrutiny. Due to the 

difficulties encountered in obtaining rigorous analytical treatment 
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of heteroclinic bifurcations near this resonance, by several numer- 

ical simulations, we shall show the complete bifurcation structure 

that takes place moving the parameters around the 1:4 resonance 

point in order to highlight several dynamic phenomena associ- 

ated with this codimension-2 bifurcation. We find out that several 

(global) bifurcations take place around this point and, accordingly, 

complex dynamics arise associated with fold and Neimark–Sacker 

bifurcations, homoclinic loop and heteroclinic cycles. The occur- 

rence of 1:4 resonance provides us that, in a certain parameter re- 

gion, invariant curves may bifurcate from a 4-cycle, meaning that 

the initially silent model with regular motion would be changed 

into one that exhibit complex behaviors after a slight change in 

the relevant parameters. Such complexity may be due to the co- 

existence of several attractors as well as to the unpredictability of 

the time path of the system in the long-run due to the presence of 

chaotic repellors. The latter are associated with homoclinic tangles 

of the saddle which arise in a certain range of parameters (see e.g. 

[31] ) giving rise to intricate basins structures, while the former re- 

lates to the problem of selecting among multiple long-run dynam- 

ics, at which the notion of (economic) unpredictability of the final 

state of the system is connected. 

The rest of the paper is organized as follows: Section 2 briefly 

recalls the main features of the monopoly model and provides the 

results about the local stability of the fixed point; Section 3 de- 

scribes the bifurcation sequence associated with the presence of 

the resonance 1:4 by showing the phase spaces and illustrating 

the transition between the different dynamic states; Section 4 con- 

cludes. 

2. A monopoly model with memory and bounded rationality 

We briefly recall the monopolistic setting of [21] in which a 

form of bounded rationality is assumed in the price decision mech- 

anism, and memory is introduced in the formation of price expec- 

tations. 

The inverse demand function has the general form 

1 

p = a − b ln q (1) 

where p and q denote the price and the quantity of the commodity, 

a and b are positive parameters. 

We consider a linear total cost function which takes the form 

CT (q ) = cq (2) 

where c ≥ 0 represents the constant marginal cost. 

Due to bounded rationality, the entire demand function is un- 

known and, accordingly, the monopolist employs a rule of thumb 

to produce a quantity that guarantees the largest profits. In partic- 

ular, it is assumed that locally the monopolistic firm, using a gradi- 

ent mechanism, looks at how the variation of quantity affects the 

variation of profits. A positive (negative) variation of profits will in- 

duce the monopolist to change the quantity in the same (opposite) 

direction from that of the previous period. No changes will occur if 

profits are constant. This mechanism can be represented as follows 

(see e.g. [22,23] among others): 

q (t + 1) = q (t) + γ q (t ) 
∂π(q (t )) 

∂q 
(3) 

where γ > 0 is the speed of adjustment to misalignments and 

π(q ) = (a − b ln q ) q − cq represents the profit function. 

As proposed in [21] it may make more sense to assume that 

the producer considers also the level of the previous production in 

order to adjust about the future level of realized output. In partic- 

ular, we will analyze the case in which the monopolist takes into 

1 The same specification for the demand function has also been proposed in [20] . 

account the most recent production realizations, so that the dy- 

namical system becomes 

q (t + 1) = q (t) + γ q (t) 
∂π(q D ) 

∂q 

= q (t) + γ q (t)[ a − c − b(1 + ln q D )] (4) 

Assuming 

q D = wq (t) + (1 − w ) q (t − 1) , (5) 

i.e. the monopolist employs a weighted average of the two most 

recent output observations to adjust the future production and 

w ∈ [0, 1] represents the weight (memory) given to actual produc- 

tion while (1 − w ) denotes how much the past output realization 

is taken into account in forming future output decisions. Substi- 

tuting (5) into (4) and defining x (t + 1) = q (t) , the model can be 

expressed by the following two-dimensional nonlinear map 

T : 

{
x ′ = q 
q ′ = q + γ q [ a − c − b(1 + ln (wq + (1 − w ) x ))] 

(6) 

where the superscript ′ denotes the unit time advancement oper- 

ator. It is easy to check that the system always admits the unique 

steady state Q 

∗ = (q ∗, q ∗) , where q ∗ = e 
a −b−c 

b maximizes the profit 

function. 

We will briefly recall 2 the stability conditions of the steady 

state: the Jacobian matrix evaluated at Q 

∗ takes the form 

J Q ∗ = 

(
0 1 

−γ b(1 − w ) 1 − γ bw 

)
(7) 

According to the usual Jury conditions based on the trace and de- 

terminant of J Q ∗ (see e.g. [24] ), straightforward computations show 

that the steady state is locally stable provided that {
2 + γ b(1 − 2 w ) > 0 

1 − γ b(1 − w ) > 0 

In particular, when γ = γPD = 

2 
b(2 w −1) 

the steady state under- 

goes a period-doubling bifurcation while at γ = γNS = 

1 
b(1 −w ) 

the 

steady state turns unstable via Neimark–Sacker bifurcation. 

The stability region of the steady state is depicted in Fig. 1 a by 

the grey-shaded area in the parameter plane ( w, γ ), in which the 

two bifurcation boundaries are highlighted. It is interesting to ob- 

serve that there exists a double stability threshold for the memory 

parameter w in which the monopoly equilibrium is locally stable 

( Fig. 1 b provides a bifurcation diagram on varying the memory pa- 

rameter w and shows the existence of such thresholds); further- 

more, as the speed of adjustment γ increases, the stability interval 

of the steady state Q 

∗ with respect to w is reduced. 

Let us now consider the behavior of the system around the 

curve γ = γNS . When dealing with a Neimark–Sacker bifurcation 

curve, we typically have a fixed point with a simple pair of 

complex-conjugate eigenvalues λ1 , 2 = e ±iθ0 , which are on the unit 

circle. In this situation, as it is well explained in [25–27] , the center 

manifold W 

c is two-dimensional, and the system on this manifold 

can be written in complex notations as 

z �→ ze ±iθ0 (1 + d 1 | z| 2 ) + O (| z| 4 ) 
where d 1 ∈ C . The non-degeneracy conditions involved are of vari- 

ous types: 

1. absence of strong resonances : 

e ±iqθ0 � = 1 , q = 1 , 2 , 3 , 4 

2 We invite the interested reader to [21] for detailed computations. 
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