
Expert Systems With Applications 87 (2017) 291–303 

Contents lists available at ScienceDirect 

Expert Systems With Applications 

journal homepage: www.elsevier.com/locate/eswa 

Improving scalability of inductive logic programming via pruning and 

best-effort optimisation 

Mishal Kazmi a , Peter Schüller b , ∗, Yücel Saygın 

a 

a Faculty of Engineering and Natural Science, Sabanci University, Istanbul, Turkey 
b Faculty of Engineering, Marmara University, Istanbul, Turkey 

a r t i c l e i n f o 

Article history: 

Received 17 March 2017 

Revised 19 May 2017 

Accepted 9 June 2017 

Available online 16 June 2017 

Keywords: 

Answer Set Programming 

Inductive logic programming 

Natural Language Processing 

Chunking 

a b s t r a c t 

Inductive Logic Programming (ILP) combines rule-based and statistical artificial intelligence methods, by 

learning a hypothesis comprising a set of rules given background knowledge and constraints for the 

search space. We focus on extending the XHAIL algorithm for ILP which is based on Answer Set Pro- 

gramming and we evaluate our extensions using the Natural Language Processing application of sentence 

chunking. With respect to processing natural language, ILP can cater for the constant change in how we 

use language on a daily basis. At the same time, ILP does not require huge amounts of training examples 

such as other statistical methods and produces interpretable results, that means a set of rules, which can 

be analysed and tweaked if necessary. As contributions we extend XHAIL with (i) a pruning mechanism 

within the hypothesis generalisation algorithm which enables learning from larger datasets, (ii) a better 

usage of modern solver technology using recently developed optimisation methods, and (iii) a time bud- 

get that permits the usage of suboptimal results. We evaluate these improvements on the task of sentence 

chunking using three datasets from a recent SemEval competition. Results show that our improvements 

allow for learning on bigger datasets with results that are of similar quality to state-of-the-art systems 

on the same task. Moreover, we compare the hypotheses obtained on datasets to gain insights on the 

structure of each dataset. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Inductive Logic Programming (ILP) ( Muggleton & De Raedt, 

1994 ) is a formalism where a set of logical rules is learned from a 

set of examples and a background knowledge theory. By combin- 

ing rule-based and statistical artificial intelligence, ILP overcomes 

the brittleness of pure logic-based approaches and the lack of in- 

terpretability of models of most statistical methods such as neu- 

ral networks or support vector machines. We here focus on ILP 

that is based on Answer Set Programming (ASP) as our underlying 

logic programming language because we aim to apply ILP to Natu- 

ral Language Processing (NLP) applications such as Machine Trans- 

lation, Summarization, Coreference Resolution, or Parsing that re- 

quire nonmonotonic reasoning with exceptions and complex back- 

ground theories. 

In our work, we apply ILP to the NLP task of sentence chunk- 

ing. Chunking, also known as ‘shallow parsing’, is the identifica- 

∗ Corresponding author. 

E-mail addresses: mishalkazmi@sabanciuniv.edu (M. Kazmi), 

peter.schuller@marmara.edu.tr , schueller.p@gmail.com (P. Schüller), 

ysaygin@sabanciuniv.edu (Y. Saygın). 

tion of short phrases such as noun phrases which mainly rely on 

Part of Speech (POS) tags. In our experiments on sentence chunk- 

ing ( Tjong Kim Sang & Buchholz, 20 0 0 ) we encountered several 

problems with state-of-the-art ASP-based ILP systems XHAIL ( Ray, 

2009 ), ILED ( Katzouris, Artikis, & Paliouras, 2015 ), and ILASP2 ( Law, 

Russo, & Broda, 2015 ). XHAIL and ILASP2 showed scalability issues 

already with 100 sentences as training data. ILED is designed to be 

highly scalable but failed in the presence of simple inconsistencies 

in examples. We decided to investigate the issue in the XHAIL sys- 

tem, which is open-source and documented well, and we made the 

following observations: 

(i) XHAIL only terminates if it finds a provably optimal hypothesis, 

(ii) the hypothesis search is done over all potentially beneficial 

rules that are supported by at least one example, and 

(iii) XHAIL contains redundancies in hypothesis search and uses 

outdated ASP technology. 

In larger datasets, observation (i) is unrealistic, because finding 

a near-optimal solution is much easier than proving optimality of 

the best solution, moreover in classical machine learning subop- 

timal solutions obtained via non-exact methods routinely provide 

state-of-the-art results. Similarly, observation (ii) makes it harder 

http://dx.doi.org/10.1016/j.eswa.2017.06.013 

0957-4174/© 2017 Elsevier Ltd. All rights reserved. 

http://dx.doi.org/10.1016/j.eswa.2017.06.013
http://www.ScienceDirect.com
http://www.elsevier.com/locate/eswa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2017.06.013&domain=pdf
mailto:mishalkazmi@sabanciuniv.edu
mailto:peter.schuller@marmara.edu.tr
mailto:schueller.p@gmail.com
mailto:ysaygin@sabanciuniv.edu
http://dx.doi.org/10.1016/j.eswa.2017.06.013


292 M. Kazmi et al. / Expert Systems With Applications 87 (2017) 291–303 

to find a hypothesis, and it generates an overfitting hypotheses 

which contains rules that are only required for a single example. 

Observation (iii) points out an engineering problem that can be 

remedied with little theoretical effort. 

To overcome the above issues, we modified the XHAIL algo- 

rithm and software, and we performed experiments on a simple 

NLP chunking task to evaluate our modifications. 

In detail, we make the following contributions. 

• We extend XHAIL with best-effort optimisation using the 

newest ASP optimisation technology of unsat-core optimisation 

( Andres, Kaufmann, Matheis, & Schaub, 2012 ) with stratifica- 

tion ( Alviano, Dodaro, Marques-Silva, & Ricca, 2015; Ansótegui, 

Bonet, & Levy, 2013 ) and core shrinking ( Alviano & Dodaro, 

2016 ) using the WASP2 ( Alviano, Dodaro, Faber, Leone, & Ricca, 

2013; Alviano, Dodaro, Leone, & Ricca, 2015 ) solver and the 

Gringo ( Gebser, Kaminski, König, & Schaub, 2011 ) grounder. We 

also extend XHAIL to provide information about the optimality 

of the hypothesis. 
• We extend the XHAIL algorithm with a parameter Pr for prun- 

ing, such that XHAIL searches for hypotheses without consider- 

ing rules that are supported by fewer than Pr examples. 
• We eliminate several redundancies in XHAIL by changing its in- 

ternal data structures. 
• We describe a framework for chunking with ILP, based on pre- 

processing with Stanford Core NLP ( Manning et al., 2014 ) tools. 
• We experimentally analyse the relationship between the prun- 

ing parameter, number of training examples, and prediction 

score on the sentence chunking ( Tjong Kim Sang & Buchholz, 

20 0 0 ) subtask of iSTS at SemEval 2016 ( Agirre et al., 2016 ). 
• We discuss the best hypothesis found for each of the three 

datasets in the SemEval task, and we discuss what can be 

learned about the dataset from these hypotheses. 

Only if we use all the above modifications together, XHAIL be- 

comes applicable in this chunking task. By learning a hypothesis 

from 500 examples, we can achieve results competitive with state- 

of-the-art systems used in the SemEval 2016 competition. 

Our extensions and modifications of the XHAIL software are 

available in a public fork of the official XHAIL Git repository 

( Bragaglia & Schüller, 2016 ). 

In Section 2 we provide an overview of logic programming and 

ILP. Section 3 gives an account of related work and available ILP 

tools. In Section 4 we describe the XHAIL system and our exten- 

sions of pruning, best-effort optimisation, and further improve- 

ments. Section 5 gives details of our representation of the chunk- 

ing task. In Section 6 we discuss empirical experiments and results. 

We conclude in Section 7 with a brief outlook on future work. 

2. Background 

We next introduce logic programming and based on that induc- 

tive logic programming. 

2.1. Logic programming 

A logic programs theory normally comprises of an alphabet 

(variable, constant, quantifier, etc.), vocabulary, logical symbols, a 

set of axioms and inference rules ( Lloyd, 2012 ). A logic program- 

ming system consists of two portions: the logic and control. Logic 

describes what kind of problem needs to be solved and control is 

how that problem can be solved. An ideal of logic programming is 

for it to be purely declarative. The popular Prolog ( Clocksin & Mel- 

lish, 2003 ) system evaluates rules using resolution, which makes 

the result of a Prolog program depending on the order of its rules 

and on the order of the bodies of its rules. Answer Set Program- 

ming (ASP) ( Brewka, Eiter, & Truszczy ́nski, 2011; Gebser, Kaminski, 

Kaufmann, & Schaub, 2012 ) is a more recent logic programming 

formalism, featuring more declarativity than Prolog by defining se- 

mantics based on Herbrand models ( Gelfond & Lifschitz, 1988 ). 

Hence the order of rules and the order of the body of the rules 

does not matter in ASP. Most ASP programs follow the Generate- 

Define-Test structure ( Lifschitz, 2002 ) to (i) generate a space of 

potential solutions, (ii) define auxiliary concepts, and (iii) test to 

invalidate solutions using constraints or incurring a cost on non- 

preferred solutions. 

An ASP program consists of rules of the following structure: 

a ← b 1 , . . . , b m 

, not b m +1 , . . . , not b n 

where a, b i are atoms from a first-order language, a is the head and 

b 1 , . . . , not b n is the body of the rule, and not is negation as fail- 

ure. Variables start with capital letters, facts (rules without body 

condition) are written as ‘ a .’ instead of ‘ a ← ’. Intuitively a is true 

if all positive body atoms are true and no negative body atom is 

true. 

The formalism can be understood more clearly by considering 

the following sentence as a simple example: 

Computers are normal l y fast machines unless they are old . 

This would be represented as a logical rule as follows: 

fastmachine(X) ← computer(X) , not old(X ) . 

where X is a variable, fastmachine, computer , and old are predicates, 

and old(X) is a negated atom. 

Adding more knowledge results in a change of a previous un- 

derstanding, this is common in human reasoning. Classical First 

Order Logic does not allow such non-monotonic reasoning, how- 

ever, ASP was designed as a commonsense reasoning formalism: a 

program has zero or more answer sets as solutions, adding knowl- 

edge to the program can remove answer sets as well as produce 

new ones. Note that ASP semantics rule out self-founded truths 

in answer sets. We use the ASP formalism due to its flexibility 

and declarativity. For formal details and a complete description 

of syntax and semantics see the ASP-Core-2 standard ( Calimeri 

et al., 2012 ). ASP has been applied to several problems related 

to Natural Language Processing, see for example Mitra and Baral 

(2016) , Schwitter (2012) , Schüller (2013, 2014, 2016) and Sharma, 

Vo, Aditya, and Baral (2015) . An overview of applications of ASP in 

general can be found in Erdem, Gelfond, and Leone (2016) . 

2.2. Inductive logic programming 

Processing natural language based on hand-crafted rules is im- 

practical because human language is constantly evolving, partially 

due to the human creativity of language use. An example of this 

was recently noticed on UK highways where they advised drivers, 

‘Don’t Pokémon Go and drive’. Pokémon Go is being informally 

used here as a verb even though it was only introduced as a game 

a few weeks before the sign was put up. To produce robust sys- 

tems, it is necessary to use statistical models of language. These 

models are often pure Machine Learning (ML) estimators with- 

out any rule components ( Manning & Schütze, 1999 ). ML meth- 

ods work very well in practice, however, they usually do not pro- 

vide a way for explaining why a certain prediction was made, be- 

cause they represent the learned knowledge in big matrices of real 

numbers. Some popular classifiers used for processing natural lan- 

guage include Naive Bayes, Decision Trees, Neural Networks, and 

Support Vector Machines (SVMs) ( Dumais, Platt, Heckerman, & Sa- 

hami, 1998 ). 

In this work, we focus on an approach that combines rule-based 

methods and statistics and provides interpretable learned mod- 

els: Inductive Logic Programming (ILP). ILP is differentiated from ML 

techniques by its use of an expressive representation language and 



https://isiarticles.com/article/162222

