Planning and scheduling in an e-learning environment.
A constraint-programming-based approach

Antonio Garrido*, Eva Onaindia, Oscar Sapena
Sistemas Informaticos y Computacion, Universidad Politecnica de Valencia, Camino de Vera s/n, 46022 Valencia, Spain

ABSTRACT
AI planning techniques offer very appealing possibilities for their application to e-learning environments. After all, dealing with course designs, learning routes and tasks keeps a strong resemblance with a planning process and its main components aimed at finding which tasks must be done and when. This paper focuses on planning learning routes under a very expressive constraint programming approach for planning. After presenting the general planning formulation based on constraint programming, we adapt it to an e-learning setting. This requires to model learners profiles, learning concepts, how tasks attain concepts at different competence levels, synchronisation constraints for working-group tasks, capacity resource constraints, multi-criteria optimisation, breaking symmetry problems and designing particular heuristics. Finally, we also present a simple example (modelled by means of an authoring tool that we are currently implementing) which shows the applicability of this model, the use of different optimisation metrics, heuristics and how the resulting learning routes can be easily generated.

1. Introduction
Automated planning is an attractive area within AI due to its direct application to real-world problems. Actually, most everyday activities require some type of intuitive planning in terms of determining a set of tasks whose execution allows us to reach some goals under certain constraints.

This direct application, the benefits it reports and, finally, the advances on the research in AI planning have facilitated the transfer of planning technology to practical applications, ranging from scientific and engineering scopes to social environments. Particularly, social environments such as education constitute an attractive field of application because of its continuous innovation and use of ICT (Information and Communication Technologies). However, it is generally agreed that education has not yet realised the full potential of the utilisation of this technology. As explained in Manoussis and Sampson (2002), this is mainly due to the fact that the traditional mode of instruction (one-to-many lecturing or one-to-one tutoring), which is adopted in conventional education, cannot fully accommodate the different learning and studying styles, strategies and preferences of diverse learners. But now, conventional education is giving way to e-learning environments, which require learners to take the learning initiatives and control how knowledge is presented during instruction (Atolagbe, 2002), which is not a simple task. Particularly, many European countries signed the Bologna joint declaration of the European space for higher education,1 which entails an important change in the learning process. With this declaration, learner’s roles are much more dynamic, active and autonomous. The amount of one-to-many lecturing decreases and significantly increases the amount of self-learning through the construction of coherent learning routes according to a certain instructional course design. Finally, this course design recommends sequence of educational tasks and material, tailored to individual learners needs and profiles.

In this paper we address the automated construction of learning routes from the viewpoint of planning based on constraint programming. After all, generating a learning route represents a planning activity with the following elements: learning goals to be attained, profile-adapted tasks with their prerequisites and learning outcomes (i.e. preconditions and effects, respectively), non-fixed durations, resources, ordering and synchronisation constraints, and collaboration/cooperation relations. The underlying idea is to plan a learning route, indicating which tasks must be done, for a learner with a given profile in order to reach some learning goals. The general scheme is shown in Fig. 1. First, an instructional course design is defined

by means of a visual authoring tool. This course is extended with
the additional, particular constraints of each application context
and, all together, is translated into a constraint programming
model that is later solved by a CSP solver. Finally, the output
solution provides a learning route per learner, that is a profile-
adapted plan. Each individual route consists of a sequence of
tasks, such as attending an in-person lesson, doing a lab exercise,
writing a report, etc. Although intuitively each course-plan is
initially created individually for each given learner, there are some
particular tasks that need to be done simultaneously by several
learners, such as attending a lab for the same practice work.
Additionally, these tasks may require some type of synchronisa-
tion (for instance, doing a working-group task), where the start
and/or end must happen at the same time. Thus, a learning route
also requires the time allocation of its tasks according to the
temporal + resource constraints, i.e. when the tasks will be done
(scheduling component), which are encoded as additional
constraints. In this context, the planning component is not
particularly costly since the plan is usually small; the number of
tasks is between 10 and 20 per route, though there may be a lot of
different alternatives. On the contrary, the scheduling component
is more significant because of the resource availability, the
diversity of constraints and their handling and synchronisation
among different routes. These features are not easily included in
traditional planning as they require artificial mechanisms to be
managed, which complicate the planning algorithms. For instance,
a very frequent type of constraints in an e-learning scenario such
as synchronisation constraints, where several actions need to
meet throughout a whole interval, is not easily represented and
handled in planners.

Our approach for planning learning routes relies on the
constraint programming formulation presented in Garrido et al.
(2006), previously based on Vidal and Geffner (2006), which
encodes all type of constraints derived from both planning and
scheduling features. Such a formulation provides a high level of
expressiveness to deal with all the elements required in an
e-learning setting and it has several advantages:

- It is a purely declarative representation and, consequently, it
can be solved by any type of CSP solver. Obviously, by any type
of CSP solver we mean a solver that supports the expressiveness
of our constraint model, which includes binary and non-
binary constraints. In any case, a non-binary constraint can be
translated into a binary one by creating new variables and
constraints (Bacchus and van Beek, 1998), though this would
increase the complexity of the model.
- The whole formulation is automatically derived from the course
design, without any need of specific hand-coded domain
knowledge. This means that no expert users are required to
develop our constraint model as it is straightforwardly generated
from the tasks and relations provided in the instructional course.
Despite this, specific ad hoc control information in the form of
hand-coded domain knowledge or domain-dependent heuristics
can be easily included in the formulation to find a better plan or
make the resolution process more efficient.
- Formal properties, such as soundness, completeness and
optimality, hold in our constraint model. In particular,
optimality is a major issue in this context and so different
optimisation multi-criteria can be defined w.r.t. the number
of actions of the learning routes, the duration of their tasks or the
cost associated to them.

In summary, this paper introduces a formulation of planning
problems by means of constraint programming and the application
of such a formulation to solve a learning-route planning problem.
This paper is organised as follows. In the second section we
present some basic background on e-learning environments and
their relation to AI planning, motivating some needs for using a
constraint programming approach. The third section briefly
reviews the formulation of a planning problem by means of
constraint programming, while in the fourth section this formula-
tion is adapted to fit an e-learning scenario, which imposes some
particular requirements. In the fifth section an example of
application is analysed, showing part of the formulation, im-
plementation and results. Finally, we present the conclusions of
the paper and point some directions for future work.

2. e-Learning and AI planning

The application of AI planning techniques has reported
important advances in the generation of automated courses
within e-learning. One of the first attempts in this direction was
the work in Peachy and McCalla (1986), in which the learning
material is structured in learning concepts and prerequisite
knowledge is defined, which states the causal relationship
دریافت فوری متن کامل مقاله

امکان دانلود نسخه تمام متن مقالات انگلیسی
امکان دانلود نسخه ترجمه شده مقالات
پذیرش سفارش ترجمه تخصصی
امکان جستجو در آرشیو جامعی از صدها موضوع و هزاران مقاله
امکان دانلود رایگان ۲ صفحه اول هر مقاله
امکان پرداخت اینترنتی با کلیه کارت های عضو شتاب
دانلود فوری مقاله پس از پرداخت آنلاین
پشتیبانی کامل خرید با بهره مندی از سیستم هوشمند رهگیری سفارشات