Collaborative filtering adapted to recommender systems of e-learning

J. Bobadilla *, F. Serradilla, A. Hernando, MovieLens
Universidad Politécnica de Madrid, Computer Science, Crta. De Valencia, Km 7, 28031 Madrid, Spain

1. Introduction

Recommender systems (RS) cover an important field within collaborative services that are developed in the Web 2.0 environment [1–3] and enable user-generated opinions to be exploited in a sophisticated and powerful way. RS can be considered as social networking tools that provide dynamic and collaborative communication, interaction and knowledge.

RS cover a wide variety of applications [4–6], although, those related to movie recommendations are the most well-known and most widely-used in the research field [7–9]. Nevertheless, the collaborative e-learning field is strongly growing [10,11], converting the users with greater knowledge will be established. Among the most widely-used models we have: Bayesian classifiers [24], neural networks [25] and fuzzy systems [26]. Generally, commercial RS use memory-based methods [27], while model-based methods are usually associated with research RS.

Regardless of the method used in the CF stage, the technical objective generally pursued is to minimize the prediction errors, by making the accuracy [28–31] of the RS as high as possible; nevertheless, there are other objectives that need to be taken into account: avoid overspecialization phenomena, find good items, credibility of recommendations, precision, recall measures, etc.

Memory-based methods work on a table of users who have rated I items. The prediction of a non-rated item for a user u is computed as an aggregate of the ratings r of the k most similar users (k-neighbors) for the same item. The most common aggregation approaches are the average and the weighted sum; the similarity approaches usually compute the similarity between two users x and y: sim(x,y) based on their ratings of items that both users have rated. The most popular similarity metrics are Pearson correlation and cosine.

2. e-Learning memory based filtering

One of the ideas underlying in the philosophy of the actuation of the RS is based on the equality between its users, not only on their possibilities of access to the service, but also above all with regards to the contribution by each one of them to the recommendations that the rest could receive. The usual RS generate the recommendations for each user based on the ratios supplied by the users with contributions most similar to them.

The equal treatment between users is adequate and convenient in the majority of the RS, for example, there is no reason, in advance, to believe that one user is more qualified than another to offer recommendations about movies, journeys, blogs, etc. However,
there exists a group of RS in which this situation does not make so much sense. The RS of e-learning are the most paradigmatic in this asymmetric situation; in these RS one can easily make a distinction between advanced and novice users, for example between the ratios generated by teachers and those generated by students, or those supplied by advanced students (for example final years) and those who are starting their studies.

One approach with which to confront this new characteristic could be to divide all the users into a list of distinct classes, each one of which could contain one of the reference groups (teachers, advanced students, novice students, etc.), and each one of the reference groups a weighting value for their importance. In our case, we have opted for a more generic and progressive solution, in which we have avoided the establishment of distinct classes establishing a weighting value for each one of the users of the system.

In our model of CF adapted to the RS of e-learning we start from the usual two-dimensional matrix of ratios \(R \) of \(U \) users for \(I \) items and we add to it another two-dimensional matrix \(C \) for scores of \(U \) users and \(T \) level tests or exams. In this way, each user of the educational system (fundamentally students) will be characterized by \(I \) possible ratings of items (in our case valuations of documents, teachers, subjects, etc.) and by \(T \) scores from academic level tests, which demonstrate their knowledge of the educational material. The number \(T \) of level tests can be as large as desired, and can include scores of automatically corrected tests, scores of subjects that have been passed, scores from exercises, practicals carried out, etc.

The fundamental idea that we would like to formalize is the weighting of the recommendations which stem from the user details, not only like the traditional similarity between their ratios and those of the rest of the users, but also to take into account that the recommendations of the users with better scores have a greater weight than the recommendations of the users with lower scores.

In order to evaluate the importance of the knowledge of a user \(x \) (\(Cx \)) over the recommendations that will be received from him a user \(y \) with knowledge \(Cy \), a large number of metrics can be established. In this paper it has been decided to use a simple and asymmetric metric that can be established by means of the function \(f \) (1), although, using other metrics such as those shown in (2) would also be feasible. The choice of one metric or another comes from the manner in which it is desired to weight the relationship of knowledge demonstrated by each pair of users and by the nature of the RS details themselves

\[
f = \begin{cases}
Cx - Cy, & Cx > Cy \\
0, & Cx \leq Cy
\end{cases}
\]

(1)

Thus, in the metric (1), if the knowledge of user \(x \) is 0.7 (on a scale of 0–1) and that of user \(y \) is 0.2 (on the same scale), the weighting of the knowledge of user \(x \) to user \(y \) would be 0.5, while the weighting of knowledge of user \(y \) to user \(x \) would be zero

\[
f = Cx - Cy, \quad f = (Cx - Cy)^2, \quad f = e^{\alpha Cx - Cy}
\]

(2)

The metric that contains the exponential function in (2) is that which offers the smoothest and most progressive results, resulting in it being the most suitable metric when there are no important reasons for designing a new one that would be adapted to the specific needs of the RS.

The new measurement for similarity between the users \(x \) and \(y \), which we call importance, can be established as defined in (3). The first term of the equation refers to the importance of the scores, while the second term refers to the similarity of the users according to their ratios and applying some of the traditional metrics (Pearson, Correlation, MSD...).

The sum serves to discover the arithmetic mean of the \(T \) scores that evaluate the knowledge of the user; a score that is not evaluated must be initialized with the minimum score (0 on the scale of 0–1). \(Cx \) represents the knowledge of the user \(x \) on the \(T \) subject, test, etc.

\[
\text{imp}(x,y) = \left[\frac{1}{T} \sum_{i=1}^{T} f(Cx_i, Cyt_i) \right] \times \text{sim}(x,y)
\]

(3)

The values of importance obtained between the pairs of users serve to obtain the desired \(k \)-neighborhoods of each user, just as is done with the traditional metrics of CF, and in this way, recommendations can be made based on the evaluations given to the \(k \) users most similar to each other.

3. Testing of the accuracy of the recommendations

In the proposed CF adapted to the RS of e-learning, the value of the item \(i \) (5) is computed according to the values of the ratios of all the users that have rated this item weighting each one of their mean scores (4). That is to say, the predicted value is compared not only with the value rated by the user, but with that expected according to the values rated by the users with better scores of the system (6), where \(r_{uy} \) denotes the rating of user \(U \) over the item \(I \), whereas \(K \) denotes the set of \(k \)-neighborhoods. The set of equations that express these ideas mathematically are:

\[
c_u = \frac{1}{T} \sum_{i=1}^{T} c_{ui}, \quad c_{ui} \in [0,1]
\]

(4)

\[
e_i = \frac{1}{K} \sum_{l=1}^{K} c_{ui}r_{ul} \quad \forall l \mid r_{ul} \neq \phi, \quad U \subset U \mid \exists r_{ul} \neq \phi \quad \mu = \frac{1}{K} \sum_{l=1}^{K} c_{ul}
\]

(5)

error_ui = \frac{1}{|K|} \sum_{l=1}^{K} |r_{ui} - (1 - \alpha) e_i + x r_{ul}| \mid r_{ui} \neq \phi \land \exists r_{ul} \neq \phi
\]

(6)

The parameter \(\alpha \) (with the range of 0–1) serves to adjust the weight that we give to the values rated by each user with regards to the weight that we give the evaluations by the users with better scores. Expressed in another way, the parameter \((1-\alpha)\) allows variation of the importance given to the evaluations by people with greater knowledge (scores).

Fig. 1 shows the meaning of the presented equations.

4. Empirical tests performed: experiment design

Due to the lack of any well-known data base for e-learning, publicly accessible for research and which contains information about the scores of the users, we used a known RS database from a field that is different from e-learning; in order to test our approach of CF adapted to e-learning we took the first five items of the MovieLens database [32] as five scores which have been evaluated by each user, in such a way that in Eq. (4) \(\bar{T} \) has the value 5 and we are able to obtain the mean score for each user. Previously a 0 is inserted for those items that have not been rated, therefore indicating that the knowledge of a user in a test not performed is nil. The remainder of the items is used to discover the similarity between pairs of users.

In all the experiments carried out, for each item that each user has rated, the average value of the ratios given by their \(k \)-neighborhoods for that item has been calculated and the prediction has been compared with the value rated by the user (6) weighted with its estimated value (5), thus obtaining the calculation of the mean absolute error (MAE).

The previous process was carried out for each of the following \(k \)-neighborhoods values: 15, 30, 60, 90, covering from 1.6% to 5.3% of the total number of users. Additionally, the values of the parameter \(\alpha \): 0.3–0.8 with steps of 0.1 have been used. The first
دریافت فوری متن کامل مقاله

امکان دانلود نسخه تمام متن مقالات انگلیسی
امکان دانلود نسخه ترجمه شده مقالات
پذیرش سفارش ترجمه تخصصی
امکان جستجو در آرشیو جامعی از صدها موضوع و هزاران مقاله
امکان دانلود رایگان ۲ صفحه اول هر مقاله
امکان پرداخت اینترنتی با کلیه کارت های عضو شتاب
دانلود فوری مقاله پس از پرداخت آنلاین
پشتیبانی کامل خرید با بهره مندی از سیستم هوشمند رهگیری سفارشات