
Applied Soft Computing 1 (2001) 35–52

Improving robustness and flexibility of tardiness and total
flow-time job shops using robustness measures

Mikkel T. Jensen∗
Department of Computer Science, University of Aarhus, Aarhus, Denmark

Accepted 23 March 2001

Abstract

The traditional focus of scheduling research is on finding schedules with a low implementation cost. However, in many real
world scheduling applications finding a robust or flexible schedule is just as important. A robust schedule is a quality schedule
expected to still be acceptable if something unforeseen happens, while a flexible schedule is a quality schedule expected to be
easy to change. In this paper, the robustness and flexibility of schedules produced by minimising different robustness measures
are investigated. One kind of robustness measure is the neighbourhood-based robustness measure, in which the basic idea is
to minimise the implementation costs of a set of schedules located around a centre schedule. For tardiness problems another
way of improving robustness is to increase the slack of the schedule by minimising lateness instead of tardiness. The problems
used in the experiments are maximum tardiness, summed tardiness and total flow-time job shop problems.

The experiments showed that the neighbourhood-based robustness measures improves robustness for all the problem
types. Flexibility is improved for maximum tardiness and loose summed tardiness problems, while it is not improved for
tight summed tardiness problems and total flow-time problems. The lateness-based robustness measures are found to also
improve robustness and in some cases flexibility for the same problems, but the improvement is not as substantial as with the
neighbourhood-based measures.

Based on these observations, it is conjectured that neighbourhood-based robustness can be expected to improve flexibility
on problems with few critical points. © 2001 Elsevier Science B.V. All rights reserved.

Keywords: Stochastic scheduling; Robustness; Flexibility; Job shop scheduling

1. Introduction

When solving a scheduling problem the focus tra-
ditionally is on minimising a measure of the cost of
implementing the schedule. However, most real world
scheduling systems operate in dynamic environments,
in which unforeseen and unplanned events can happen
at short notice. Such events include the breakdown of
machines, employees getting sick, new jobs appear-
ing, etc. The problem encountered when an unfore-

∗ URL: www.daimi.au.dk/∼mjensen/.
E-mail address: mjensen@daimi.au.dk (M.T. Jensen).

seen event and a schedule has to be changed is usu-
ally called a rescheduling problem. When a reschedul-
ing problem is solved a new schedule incorporating
the changes in the environment and the part of the
preschedule (the schedule followed prior to the break-
down) already implemented is sought. This schedule
should ideally have as low an implementation cost as
possible. When the unforeseen event is a breakdown
(the temporary unavailability of a resource), the sim-
plest way to solve a rescheduling problem is often to
keep the processing order of the preschedule, but de-
lay processing when necessary. In the following this
kind of rescheduling is called simple rescheduling or

1568-4946/01/$ – see front matter © 2001 Elsevier Science B.V. All rights reserved.
PII: S1 5 6 8 -4 9 46 (01 )00005 -9



36 M.T. Jensen / Applied Soft Computing 1 (2001) 35–52

right-shifting. Right-shifting is the simplest and fastest
kind of rescheduling, but in order to improve perfor-
mance more complex methods searching some set of
schedules can be used. In the following, this is called
rescheduling using search.

The difficulty of the rescheduling problem de-
pends on the nature of the breakdown as well as the
preschedule. Some preschedules will generally lead
to rescheduling problems with lower implementation
costs than others. A preschedule which tends to per-
form better than ordinary schedules after a breakdown
and right-shifting is termed robust, while a schedule
which tends to perform well after a breakdown and
rescheduling using search is termed flexible.

It is difficult to relate the terms flexibility and ro-
bustness to each other. Often a schedule which is
robust can also turn out to be flexible to some de-
gree, since robustness means that the schedule is still
acceptable if small delays happen during schedule
execution. The acceptability of small delays is an ad-
vantage if small changes are made to the schedule. On
the other hand, the acceptability of small delays does
not necessarily say anything about the possibility of
making profound changes in the schedule.

The objective of this paper is to investigate two
ways of achieving schedule robustness and flexi-
bility for job shop problems. The first way is the
neighbourhood-based robustness measure technique
used in [10] on makespan problems, which is refor-
mulated for maximum and summed tardiness, and
total flowtime problems. The second way is a simpler
idea applicable to tardiness problems; by minimising
a measure of lateness instead of tardiness, the slack
in the schedules can be increased, which may im-
prove the rescheduling performance of the schedules.
The slack of an operation in a schedule is the “buffer
time” by which the operation can be delayed without
worsening the performance of the schedule.

The work presented in this paper is an exten-
sion of the work presented in [11], in which the
neighbourhood-based robustness idea was compared
to ordinary scheduling for the performance measures
maximum tardiness, summed tardiness and total flow
time on a smaller range of problems.

The outline of the paper is as follows. Section 2
defines the job shop scheduling problem and notation.
In Section 3 previous work on robust scheduling is
briefly covered. Section 4 introduces the robustness

measures for the maximum, summed tardiness and
total flow-time job shop problems. In Section 5 the
genetic algorithm used to perform the scheduling is
described, while Section 6 describes how breakdowns
are simulated and how rescheduling is performed
in the experiments. Section 7 describes the experi-
ments and reports the results. Section 8 contains the
conclusions.

2. Notation

An N × M job shop scheduling problem consists
of N jobs and M machines. A job Jj consists of a se-
quence of operations Ōj = (oj1, oj2, . . . , ojkj ). Each
operation oj l is to be processed on a specific machine
and has a specific processing time τ jl . Each job has
at most one operation on each machine. The pro-
cessing order of the operations in job Jj must be the
order specified in the sequence Ōj . These sequences
are often called the technological constraints. During
processing each machine can process at most one op-
eration at a time, and no preemption can take place;
once processing of an operation has been started it
must run until it has completed. In the following Cj

will denote the end of processing time of the last
operation of job Jj in a given schedule.

Some problems include a due date dj for each job,
a time by which the processing of the job is supposed
to be finished, a release time rj for each job, prior
to which no processing of the job can be done, or a
initial set-up time sm for each machine, prior to which
on processing can be done on the machine.

A number of different objective functions exist for
job shop problems. The most extensively researched
is the makespan Cmax = maxj∈{1,...,N} (Cj ), the
time elapsed from the beginning of processing un-
til the last operation has completed. The makespan
objective is not realistic, since it is not well-suited
for scheduling on a rolling time horizon-basis (jobs
arriving continuously over time), and since it does
not include due dates. More realistic objectives in-
clude total flowtime F = ∑N

j=1Cj − rj , summed

lateness L∑ = ∑N
j=1Cj − dj , summed tardiness

T∑ = ∑N
j=1max (Cj − dj , 0), maximum lateness

Lmax = maxj∈{1,...,N} (Cj − dj ) and maximum tardi-
ness Tmax = max (Lmax, 0). All of these performance
measures reflect schedule implementation cost and



https://isiarticles.com/article/18892

