
J. Parallel Distrib. Comput. 73 (2013) 926–938

Contents lists available at SciVerse ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

Job scheduling with adjusted runtime estimates on production
supercomputers
Wei Tang a,∗, Narayan Desai b, Daniel Buettner b, Zhiling Lan a

a Illinois Institute of Technology, Chicago, IL 60616, USA
b Argonne National Laboratory, Argonne, IL 60439, USA

h i g h l i g h t s

• We studied the inaccuracy of user runtime estimates in large amount of job traces.
• We proposed a set of runtime adjusting schemes to better the estimation accuracy.
• We refined our schemes to avoid impact of too much adjusting (underestimates).
• We used real job trace to evaluate our schemes and got positive results.

a r t i c l e i n f o

Article history:
Received 29 August 2011
Received in revised form
4 February 2013
Accepted 12 February 2013
Available online 6 March 2013

Keywords:
Job scheduling
Runtime estimates
Walltime prediction

a b s t r a c t

The estimate of a parallel job’s running time (walltime) is an important attribute used by resource
managers and job schedulers in various scenarios, such as backfilling and short-job-first scheduling. This
value is provided by the user, however, and has been repeatedly shown to be inaccurate. We studied
the workload characteristic based on a large amount of historical data (over 275,000 jobs in two and
a half years) from a production leadership-class computer. Based on that study, we proposed a set of
walltime adjustment schemes producing more accurate estimates. To ensure the utility of these schemes
on production systems, we analyzed their potential impact in scheduling and evaluated the schemes
with an event-driven simulator. Our experimental results show that our method can achieve not only
better overall estimation accuracy but also improvedoverall systemperformance. Specifically, the average
estimation accuracy of the tested workload can be improved by up to 35%, and the system performance
in terms of average waiting time and weighted average waiting time can be improved by up to 22% and
28%, respectively.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

In a supercomputing systems, the job runtime estimate, also
called requested walltime, is an important job attribute provided
by users at job submission. Although this value was originally used
by resource managers to kill a job at its expiration, the value is
also heavily used in job scheduling. Backfilling [15], for example,
needs to know the expected runtime of both running and wait-
ing jobs so that it can fill short jobs into backfilling windows, re-
ducing fragmentation without delaying high-priority jobs. Some
schedulers favor short jobs in order to achieve improved average
response time [23]; they need to know the runtime estimates of the
waiting jobs when sorting the queue. Moreover, job runtime esti-
mates are essential to other resource management strategies, such
as advance reservation [11], queuing time prediction [7,20], and

∗ Corresponding author.
E-mail address:wtang6@iit.edu (W. Tang).

walltime-aware job allocation reducing fragmentation on torus-
connected systems [24].

However, user estimates of job running time have been re-
peatedly demonstrated to be highly inaccurate [3,30,2]. Indeed, a
large number of jobs consume only a small portion of the walltime
requested. A number of studies have been done to investigate
whether such inaccuracy can impact job scheduling performance.
Surprisingly controversial results have been reported. On one
hand, some claimed inaccuracy is helpful. For example, Mu’alem
et al. [15] reported that the inaccurate runtime estimates have
the potential to be beneficial because of backfilling; such results
have led to the suggestion that estimates should be doubled [34]
or randomized [17] to make them even less accurate. On the other
hand, some others suggested accuracy is more favorable. Studies
have shown that using more accurate runtime estimates can im-
prove system performance far more significantly than previously
suggested [2,21,28].

In this paper, we present a set of walltime adjustment schemes
that can be used by large-scale production systems directly. First,

0743-7315/$ – see front matter© 2013 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.jpdc.2013.02.006

http://dx.doi.org/10.1016/j.jpdc.2013.02.006
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.jpdc.2013.02.006&domain=pdf
mailto:wtang6@iit.edu
http://dx.doi.org/10.1016/j.jpdc.2013.02.006


W. Tang et al. / J. Parallel Distrib. Comput. 73 (2013) 926–938 927

we studied workload characteristics based on a large amount of
historical data (275,000 jobs in 30 months) from a leadership-
class computer. Next, we proposed a set of walltime adjustment
schemes to produce more accurate estimates, and we discussed
how to configure each scheme for real computer systems. We
evaluated the performance of our walltime adjustment schemes
on production machines using simulations with real workloads.
Our experimental results show that our method can achieve not
only better overall estimation accuracy but also improved overall
system performance. Specifically, the average and median of
estimation accuracy of the tested workload can be improved by up
to 35% and 42%, respectively.Moreover, the systemperformance in
terms of average waiting time and weighted average waiting time
can be improved by up to 22% and 28%, respectively.

In this paper, several terms regarding job runtime are used
repeatedly. For example, we use job actual runtime (tact ) for job
execution time. We use user-requested walltime (treq), or simply
walltime, to represent the runtime estimates provided by users at
job submission; the resourcemanager kills jobswhen this time ex-
pires. We use tsched to represent the jobwalltime used by scheduler
for prioritizing and backfilling jobs. Usually, tsched equals treq; but in
this work, tsched can be other adjusted values. In this context, the
term ‘‘walltime adjustment’’ refers to the effort of a system to ad-
just the user’s estimates to create possibly more accurate walltime
estimates. The term ‘‘walltime estimate’’ refers to the runtime es-
timate either provided by users or adjusted by the system.

The remainder of this paper is organized as follows. Section 2
discusses some related work. Section 3 presents our study of
historical job traces. Section 4 presents our walltime adjustment
schemes and analytical evaluation. Section 5 presents our analysis
of the impact of imperfect prediction and an enhancement for
utilizing walltime adjustment. Section 6 presents a performance
evaluation of scheduling using enhanced walltime adjustment.
Section 7 summarizes our conclusions.

2. Related work

In this sectionwe review some related studies that have focused
on various aspects of runtime estimation, including accuracy and
impact on job scheduling, and we present schemes for improving
the accuracy.

2.1. Inaccuracy of user estimation

User-provided runtime estimates are known to be inaccurate.
For example, Cirne and Berman [3] showed that in four different
traces, 50%–60% of jobs used less than 20% of their requested time.
Ward et al. [30] reported that jobs on the Cray T3E used on average
only 29% of their requested time. Chiang et al. [2] studied a certain
workload and found that users grossly overestimated their job
runtime, with 35% of jobs using less than 10% of their requested
time. Similar patterns are seen in other workload analyses [15,21].
We studied a large amount of data from a production Blue Gene/P
system [1] and found that although the accuracy is better than
previously reported, the user estimates are still highly inaccurate:
half the jobs use less than 50% of their requested walltime.

2.2. Impact of user runtime estimates on job scheduling

Considerable work has been done on backfilling job schedul-
ing and the dependence on runtime estimation. Many results
suggest that usingmore accurate requested runtime has only min-
imal impact on system performance [15,20,34]. Additional results
in [15] show that doubling the user-requested runtime slightly im-
proves, on average, the slowdown and response time for IBM SP
workloads using FCFS–backfill. Other results are conflicting. Chiang

et al. [2] examined this question on the NCSA Origin 2000 (O2K)
and showed that more accurate requested runtime can improve
system performance much more significantly than suggested in
previous studies. Srinivasan et al. [21] studied the effect of vari-
ous backfilling schemes on different priority policies and observed
that inaccurate estimates can significantly deteriorate the over-
all performance. On the other hand, Tsafrir et al. [29,26] offered
two reasons that inaccuracy could better the scheduling: (1) an
invalid model (F-model) is used in modeling user estimates, and
(2) the improved performance is due to the ‘‘heel and toe’’ effect—
that is, the FCFS–backfilling is switched into a short-job-first type
of policy. Zhang et al. [33] showed that even though the average
job behavior is insensitive to the average degree of overestimation,
individual jobs can be affected; under common backfilling
schemes, users who provide more accurate runtimes are favored
over ones that do not.

Our work also reveals the relationship between the accuracy
and scheduling performance, but we do not use artificial or mod-
eled inaccuracy. Instead, we evaluate the performance change us-
ing theworkload after applying realwalltime adjustment schemes,
where the requested walltime is adjusted based on the real inputs.

2.3. Motivation for improving user accuracy

Besides the goal of improving the job scheduling performance
directly [22,28], a wide range of related work shares the common
motivation of improving the accuracy of runtime estimation. One
example is advance reservations for grid allocation and collocation,
shown to benefit considerably frombetter accuracy [11,20,14]. An-
other is scheduling moldable jobs that may run on any number of
nodes [7,20,4]. The scheduler’s goal is to minimize response time,
considering whether waiting for more nodes to become available
is preferable over running immediately. Thus, a reliable predic-
tion of how long it will take for additional nodes to become avail-
able is crucial. Recently, Yuan et al. [32] proposed PV-EASY
backfilling; this scheme, used to guarantee strict fairness and pro-
tect the interests of blocked top-priority jobs, also needs more
accurate walltime estimates. Similarly, our previous work [24]
proposed a walltime-aware job allocation strategy that tries to
pack jobs with similar size and length together to reduce fragmen-
tation on torus-connected system; its performance improves with
better walltime estimation accuracy.

Our primary motivation is to better the backfilling and queue
sorting. But, with more accurate estimates, our schemes benefit
all the other motivating problems that requiring more accurate
estimates.

2.4. Efforts to improve user estimations

Numerous efforts have been devoted to improving the accuracy
of user runtime estimates. Lee et al. [13] tried to improve user esti-
mation by removing the threat of job killing at walltime expiration
and providing tangible reward for accurate estimates. However,
experiments showed that their method leads to only insubstan-
tial improvement in the overall average accuracy. Considerable
research has focused on using system-generated prediction to bet-
ter the estimation accuracy. Suggested prediction schemes include
using the top of a 95% confidence interval of job runtime [8], a
statistical model based on the (usually) long uniform distribution
of runtime [7], using the mean plus 1.5 standard deviations, ge-
netic algorithms [20,19], instance-based learning [18], rough set
theory [12], and three-phase adaptive prediction [9,10]. Tsafrir
et al. [28] proposed a runtime predictor that averages the runtime
of the last two jobs by the same user. Wu et al. [31] proposed an
adaptive hybridmethod (AHModel) for Grid load predictionwithin
confidence windows.



https://isiarticles.com/article/20360

