
Exploring the oscillatory dynamics of a forbidden returns
inventory system

Xun Wang a,n, Stephen M. Disney b, Jing Wang a

a School of Economics and Management, BeiHang University, Beijing 100191, China
b Logistic Systems Dynamics Group, Cardiff Business School, Cardiff University, Colum Drive, Cardiff CF10 3EU, UK

a r t i c l e i n f o

Article history:

Received 30 November 2011

Accepted 16 August 2012
Available online 25 August 2012

Keywords:

Nonlinear inventory system

Forbidden returns

Oscillation

Bifurcation

Stability

a b s t r a c t

We present an analytical investigation of the intrinsic oscillations in a nonlinear inventory system

where excessive inventory cannot be returned to the supplier. Mathematically this is captured by a

non-negative constraint on the replenishment order. By studying the eigenvalues of the characteristic

matrices of the system, the criteria for different types of dynamic behaviour (including convergence,

periodicity, quasi-periodicity, chaos, and divergence) are derived. The upper and lower bounds of the

order and inventory oscillations are found via a time-domain analysis. Our results are verified by

bifurcation diagrams. We find that the closer the replenishment rule feedback parameters are to the

convergence area, the milder the intrinsic oscillation of the system.

& 2012 Elsevier B.V. All rights reserved.

1. Introduction and motivation

A supply chain’s inventory control policy needs to attenuate
fluctuations in demand, so as to maintain a smooth production
rate in the face of both externally and internally generated
disturbances. It should also maintain inventory levels around
target safety stock levels. One of the most well-studied oscillation
phenomena in supply chains is the so-called bullwhip effect.
Since the pioneering work of Lee et al. (1997), much effort has
been devoted to this problem. Many factors affecting the bullwhip
effect have been investigated including: the impact of forecasting
methods (Chen et al., 2000; Dejonckheere et al., 2003); statistical
modelling of demand processes (Aviv, 2003; Gaalman, 2006);
cooperative mechanisms such as information sharing (Lee et al.,
2000; Dejonckheere et al., 2004); and Vendor Managed Inventory
(Disney and Towill, 2003a). The integration of control theory and
system dynamics approaches provides a powerful approach for
quantifying and mitigating such effect (Disney and Towill, 2003b).
However, in most of the previous theoretical studies on the
bullwhip effect, linear inventory system models were adopted.
In linear systems dynamical oscillations can only be generated by
external events (such as demand). This has greatly limited the
applicability of published results and has made it impossible to
explain and describe oscillations caused by internal factors.

To maintain linearity of inventory system models, order rates
are permitted to take negative values. This means that all
participants in a supply chain are allowed to return excess
product freely. Specifically, a negative order rate value leads to
a decrease in the inventory level at the consuming echelon and an
immediate increase in the inventory level at the supplying
echelon. This assumption may be difficult to realize in reality
but we do recognize that it exists in some supply chains. For
example in the consumer electronics and book publishing supply
chains it is accepted practice that retailers may return unwanted
product to the manufacturer/publisher. In practice this may also
mean that the excess inventory is not physically moved from one
location to another but instead will be considered to be in the
possession of the upstream supplier until being used as part of a
future replenishment (Hosoda and Disney, 2009).

It has also been demonstrated that nonlinear effects play an
important role in inventory systems, sometimes even a dominant
role (Nagatani and Helbing, 2004). When linearity assumptions
are removed complex dynamic behaviours are revealed. The
behaviour may even become chaotic or hyper-chaotic. More
importantly, oscillations generated internally by the system itself,
rather than by the external environment, may arise. Mosekilde
and Larsen (1988) adapted the beer game model (Sterman, 1989)
to include both forbidden returns and lost sales constraints. To
make the chaotic phenomenon more obvious, a long lead-time
was used. Mosekilde and Larsen (1988) found that the operating
cost of this constrained system could be 500 times higher than its
linear counterpart. Thomsen et al. (1992) concluded that eco-
nomic and business systems do not necessarily operate close to
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their steady state. Hwarng and Xie (2008) investigated several
system factors that affect chaotic behaviour and discovered a
‘chaos-amplification’ phenomenon between supply chain eche-
lons. Wu and Zhang (2007), using a supply chain model with a
constrained discount rate and exponential demand function,
found that the attractors of the model in the phase space moves
with the assumed initial states, rendering it impossible to provide
guidelines for avoiding chaos by bifurcation analysis. Wang et al.
(2005) used the Lyapunov exponent to identify chaotic demand in
real supply chain data and proposed an algorithm to cope with it
from a time series aspect.

The piecewise linear modelling approach has also been shown
to be effective for certain nonlinear supply chain problems as the
piecewise linear function is able to approximate any nonlinear
function to any required level of accuracy. Liu (2005) and
Rodrigues and Boukas (2006) analyzed the stability of supply
chain inventory systems with piecewise linear techniques.
Laugesen and Mosekilde (2006) and Mosekilde and Laugesen
(2007) studied border-collision bifurcations in piecewise linear
supply chain systems. However, mathematical properties of such
systems, such as local and global stability conditions and bifurca-
tions, are still ‘‘very hard to investigate’’ and ‘‘notoriously challen-
ging’’ (Sun, 2010).

This paper is concerned with identifying the range of oscilla-
tions in a constrained supply chain that are generated by the
system itself rather than by the external environment. For our
analysis a unit step demand input will be adopted (unless
otherwise stated) to emphasize that it is the system itself rather
than the environment that is generating these dynamical effects.
The pattern and amplitude of each kind of oscillation will be
characterized. Section 2 models the constrained one echelon
supply chain system piecewise-linearly. Section 3 investigates
the type of oscillation pattern produced by the inventory system.
Section 4 focuses on the upper and lower bounds of oscillation
with respect to the order volume and inventory level. Concluding
remarks are given in Section 5.

2. Modelling and assumptions of forbidden returns inventory
system

Our inventory system model has several components that can
be described in the time domain by difference equations. These
equations will be listed below. First, we assume that the inven-
tory system uses exponential smoothing as a forecasting method.
The exponential smoothing forecasts are generated with

d̂t ¼ aF dtþð1�aF Þd̂t�1, ð1Þ

where dt is the demand at time t, d̂t is its forecast at time t and aF

is the exponential smoothing constant. 0raFo2 is required for
stability of the forecasting system. Within the inventory system,
the inventory levels obey the usual conservation law such that the
new level of inventory equals the inventory level in the previous
period plus the net in-flow into that state. That is

it ¼ it�1þct�dt , ð2Þ

where it is the inventory level, ct is the completion rate (what
arrives from the supplier or the production system) and ot is the
order rate at time. Factors such as the loss/damage/late delivery
of goods in storage and transportation will be omitted. The work-
in-progress, WIP, (or orders placed but not yet received) also
obeys the conservation law,

wt ¼wt�1þot�1�ct ¼
XTp

i ¼ 1

ot�i, ð3Þ

where wt is the work-in-process level and Tp is the physical lead-

time. To capture the time delay between placing an order and
receiving it into inventory there is a sequence of events delay
for (information) order processing of one period and a physical
lead-time, Tp, for production/transportation, also of one period
duration. This means that

rt ¼ ot�1, ð4Þ

and

ct ¼ rt�1 ð5Þ

rt is an auxiliary variable used to capture the review period and
ensure a proper sequence of events. This auxiliary variable is also
essential in establishing the matrix form of the inventory system.
We make this unit lead-time assumption for the simplicity in
future analysis. Non-negative WIP is assured as the orders cannot
be negative; this fact is most easily recognized from the RHS of
(3). It is clear from existing research on linear inventory system
analysis that increasing the lead-time will severely harm the
dynamic performance and reduce the size of its stability region in
the parametrical space, Towill and Disney (2008). We note that it
is theoretically possible to extend this analysis to higher lead-
time cases. However the complexity of the analysis increases with
the lead-time and, as we will demonstrate, this system already
exhibits a very rich set of dynamics behaviours, even with such a
short, known and constant lead-time.

Using these four building blocks (the forecast, the inventory
and WIP balance equations and the lead-time equations), we
adopt the Automatic Pipeline, Variable Inventory and Order Based
Production Control System (APVIOBPCS) ordering policy for pla-
cing replenishment orders. For a thorough review of this policy
and the entire IOBPCS family we refer readers to Sarimveis et al.
(2008). This policy has been frequently studied as it is of a very
general nature. This policy determines the replenishment order
quantity as ‘‘the demand forecast, plus a fraction of inventory
discrepancy, plus a fraction of work-in-process discrepancy’’
(Disney and Towill, 2003a). The APVIOBPCS replenishment rule
is a generalization of the industrially popular Order-Up-To policy,
Dejonckheere et al. (2003), and has a long history in the literature.
Inventory and work-in-process discrepancies are the expected
levels, ît and ŵt , minus the actual levels, it and wt, respectively. In
the APVIOBPCS model, expected inventory level is set as a multi-
ple k of expected demand (k is a constant called ‘‘target inventory
gain’’). The expected work-in-process is a multiple Tp of expected
demand, ŵt ¼ Tpd̂t (Sarimveis et al., 2008). For simplicity we set
k¼1 and Tp¼1. Therefore, ît ¼ ŵt ¼ d̂t . We use aS and aSL to denote
the fractions arbitrarily set by decision makers. The subscript S is
for stock (inventory), SL for supply line (work-in-process). In
other words, aS and aSL are proportional feedback controllers
acting upon the of inventory and work-in-process information
used to generate a replenishment order. The APVIOBPCS ordering
policy can be expressed as

ot ¼ ½d̂tþaSðît�itÞþaSLðŵt�wtÞ�
þ

¼ ½d̂tþaSðd̂t�itÞþaSLðd̂t�wtÞ�
þ

¼ ½ð1þaSþaSLÞd̂t�aSit�aSLwt �
þ ð6Þ

The ordering policy in (6) was found to mimic real-life
decisions made by players of the Beer Game, Sterman (1989).
Forbidden returns (non-negative orders) are enforced with the
maximum operator, [x]þ¼max[0, x], in (6). Contrary to the linear
assumption, we assume that when the desired order rate (calcu-
lated by the expression inside the square bracket in (6)) is
negative, the supply chain participant can only stop ordering
and wait for the excess inventory to be depleted before positive
orders are resumed. Since there is no non-negative constraint on
the inventory level, the following underlying assumptions are
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