
Ž .Automation in Construction 10 2001 639–643
www.elsevier.comrlocaterautcon

Agents and suggestions in a Web-based dynamic workflow model

Malcolm Crowe a,), Sandy Kydd b

a Department of Computing and Information Systems, UniÕersity of Paisley, Paisley, Scotland PA1 2BE, UK
b DMC Ltd, 3 La Belle Place, Glasgow, UK

Abstract

Ž .Two features of this dynamic workflow system make it suitable for the use of quasi-intelligent agents: a workflow
Ž .processes need not be fully specified, and so can be non-prescriptive in approach, and b a job can be modified

independently of the process of which it is an instance, and so some participants may have permissions to change its course.
In the architecture that has been chosen for the research, web clients are used, and web agents generate suggestions based on
analysis of the process itself, the current job, and the records of previous jobs. q 2001 Elsevier Science B.V. All rights
reserved.

Keywords: Agents; Suggestions; Dynamic workflow

1. Introduction

In today’s Internet-enabled society, many applica-
tions that would normally have been restricted to
only being available within an organisation are now
online, and can span not only companies and organi-
sations, but also national boundaries, to be become
truly location-independent. Workflow systems, where
participants in a workflow process may not be con-
tained solely within one organisation andror loca-
tion, are prime examples of applications that can take
advantage of this new ubiquity in computer connec-
tivity. The Internet, and consequently, the World
Wide Web as its most user-friendly incarnation, is an
obvious arena in which workflow systems should
become established.

) Corresponding author. Tel.: q44-141-848-3300.
Ž .E-mail address: crow-ci0@paisley.ac.uk M. Crowe .

The term dynamic workflow means that the ele-
ments defined in a workflow process are not defined
rigidly, and can be changed or altered to reflect the
way that instances of the workflow process are actu-
ally run. The workflow process is dynamic — al-
though elements in it are defined, they can be changed
when a job is run for the process. Elements can be
edited for individual jobs, and exception conditions
handled. A logical extension of this model is to
allow process definitions to evolve based on what is
actually being done in jobs for the process, when
users make changes in the jobs to the definitions
initially supplied from the process. This leads to the
idea of automatically suggesting changes to a pro-
cess definition in a process review phase, based on
analysis of the jobs that have been run for the
process.

The basic architecture for the prototype system is
that of a workflow database accessed via various
programming interfaces, and web-based user clients,
other client applications and standalone agent clients

0926-5805r01r$ - see front matter q 2001 Elsevier Science B.V. All rights reserved.
Ž .PII: S0926-5805 00 00072-8

()M. Crowe, S. KyddrAutomation in Construction 10 2001 639–643640

manipulating the database contents through the de-
fined interfaces. The client applications allow the
creation of processes, the instantiation of jobs from
the processes, and running of these jobs. The agent
applications generate suggestions in the database.

In the dynamic workflow system prototype, the
server side scripting language PHP is used to generate
dynamic content from the database for producing the

w xstandard web pages in the system 3 . PHP provides a
simple scripting language that can be embedded in
specialised tags in HTML documents. When a user
requests such a document, the document is parsed by
the PHP interpreter prior to sending it back to the web
client, and the embedded scripts can generate the
dynamic portions of the document at this point. The
main reasons this language was chosen is that the
scripting language is fast, simple, and it is easily
interfaced to a large number of SQL database sys-
tems. The initial implementation was attempted us-
ing Perl as the language to generate the dynamic

w xcontent as a standard CGI application 4 , but PHP

proved to have a large performance advantage in
generating the dynamic content, especially when used

w xas a module for the Apache web server 2 . It was
also a lot simpler for making changes to the web
pages in the user interface. However, certain portions
of the web interface, namely the workflow calcula-
tion, were retained as Perl CGI scripts, since the
activity rules were specified in Perl.

Since the prototype workflow system was built as
a web application, the user interface to the system is
a web browser, and the server parts of the system,
including the database, were interfaced through the

Žweb server. The other client parts of the system i.e.
.the suggestion generator agents were implemented

on the server platform for the sake of simplicity,
although this is an implementation decision, rather
than a restriction in the system architecture. The
suggestion generator agents and other utility pro-
grams were written in Perl, and this language proved
to be fast and flexible for producing such ad hoc
applications.

2. Suggestions

Suggestions are workflow elements that were not
created in the process definition, but are produced by

the workflow system based on analysis of jobs that
have been instantiated and run from a process defini-
tion. The purpose of these suggestions is twofold:

v to produce revisions to the definition of a process
Žencapsulated within an individual running job i.e.

.the changes to the job definition
v to produce revisions to the process definition for

all subsequent instantiations of the process

w xRef. 1 talks about Asuggesting revisions to the
process planB. This refers only to the first case
mentioned above, i.e. the Aruntime enactment of a
process by multiple participantsB. The dynamic
workflow model described here extends this to in-
clude the second case as well. In this way, the
workflow system cannot only generate suggestions
that will be used in an individual job, but it can
analyse past jobs run from a process definition and
suggest ways in which the process definition could
evolve to reflect the way that the jobs were actually
run.

Suggestions for a job can be generated for a job
on a per-job basis, by analysing the activities and
links in a job definition that have not yet been
enabled and executed, and trying to guess which
activities might be appropriate for participants to do
next, even if they have not been scheduled by the
formal workflow definition. These are classified as
lookahead suggestions. Lookahead suggestions are
seen as necessary in providing support for exception
handling, as they can be generated to enable activi-
ties that have not been defined to be executed in the
job, but which are only invoked when some con-
straint condition is broken.

A simple method of generating lookahead sugges-
tions for a job is given below:

1. Get the activities for the job that have not yet
been run

2. For each activity, evaluate its pre-condition, and
Žif it is true i.e. the activity has met its pre-condi-

.tions for execution , create a suggested work item

Using lookahead suggestions means that some of
the constraints of traditional workflow systems in
having temporally linear execution of activities can
be overcome. For example, two activities may be

https://isiarticles.com/article/21708

