
Execution coordination in mobile agent-based distributed job workflow execution

Yuhong Feng, Wentong Cai *

Parallel and Distributed Computing Centre, School of Computer Engineering, Nanyang Technological University, Singapore 639798, Singapore

a r t i c l e i n f o

Article history:
Received 16 April 2007
Received in revised form 8 January 2008
Accepted 7 April 2008
Available online 26 April 2008

Keywords:
Grid computing
Distributed job workflow execution
Mobile agent
Execution coordination

a b s t r a c t

Mobile agent-based distributed job workflow execution requires the use of execution coordination tech-
niques to ensure that an agent executing a subjob can locate its predecessors’ execution results. This
paper describes the classification, implementation, and evaluation of execution coordination techniques
in the mobile agent-based distributed job workflow execution system. First, a classification of the existing
execution coordination techniques is developed for mobile agent systems. Second, to put the discussion
into perspective, our framework for mobile agent-based distributed job workflow execution over the Grid
(that is, MCCF: Mobile Code Collaboration Framework) is described. How the existing coordination tech-
niques can be applied in the MCCF is also discussed. Finally, a performance study has been conducted to
evaluate three coordination techniques using real and simulated job workflows. The results are presented
and discussed in the paper.

� 2008 Elsevier B.V. All rights reserved.

1. Introduction

Complex scientific applications can generally be viewed as job
workflows in which subjobs (i.e., nodes or activities) represent
application components and dependencies represent the interac-
tions between the components. In a Service Oriented Architecture
(SOA), common application components are usually deployed as
services. A workflow engine coordinates the data and control flow
amongst multiple services and allows the enactment of workflows
to take advantages of distributed services and resources.

Data intensive scientific applications, such as bioinformatics
[21] and digital imaging survey (e.g., Sloan Digital Sky Survey
(SDSS) [1]), often involve diverse, high volume, and distributed
data sets. They can be generally expressed as a workflow of a num-
ber of analysis modules, each of which acts on specific sets of data
and performs cross multidisciplinary computations.

To reduce the communication overhead caused by data move-
ment and to provide decentralized control of execution during
the workflow enactment, the Mobile Code Collaboration Frame-
work (MCCF) is developed to map the execution of subjobs to the
distributed resources and to coordinate the subjobs’ execution at
runtime according to the abstract workflow provided by users
[16]. Light-weight Mobile Agent (LMA) [6] and Code-on-Demand
(CoD) [18] techniques are adopted in the development of the
MCCF, so that an analysis module in data intensive scientific appli-
cations can be executed at a computational resource close to where
the required data set is located.

The MCCF, which does not have a centralized engine, is differ-
ent from the existing scientific workflow engines (e.g., Condor’s

DAGMan,1 SCIRun2). When multiple data independent subjobs can
be executed concurrently, replicas of an exiting LMA will be gener-
ated so that there is one LMA for each subjob. The LMAs will then
be migrated to the different computational resources for the execu-
tion of these data independent subjobs in parallel. Because of the
data dependencies in a job workflow, before an LMA executes a
subjob, it needs to locate the execution results of its predecessors.
When multiple concurrently executing subjobs have a common
immediate successor, only one of the corresponding LMAs should
be selected for the latter’s execution. Others should be discarded.
Due to the lack of a centralized engine, execution coordination is
therefore required in the MCCF. So, the objective of the paper is
to investigate and evaluate execution coordination technique for
the MCCF.

Execution coordination of mobile agents is a well researched
area. There are many techniques that have been developed. Section
2 gives a classification of these techniques according to how they
can be applied in the mobile agent-based distributed job workflow
execution. To further analyze their applicability, the MCCF and
how these coordination techniques can be implemented in the
MCCF are presented in Section 3. A comparative, experimental
study of these coordination techniques is presented in Section 4.
Section 5 concludes the paper and outlines the future work.

2. Classification of execution coordination techniques

According to how a subjob obtains the locations of its
predecessors’ execution results, the execution coordination

1383-7621/$ - see front matter � 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.sysarc.2008.04.011

* Corresponding author. Tel.: +65 67904600; fax: +65 67926559.
E-mail address: aswtcai@ntu.edu.sg (W. Cai).

1 http://www.cs.wisc.edu/condor/dagman/.
2 http://software.sci.utah.edu/scirun.html.

Journal of Systems Architecture 54 (2008) 944–956

Contents lists available at ScienceDirect

Journal of Systems Architecture

journal homepage: www.elsevier .com/locate /sysarc

mailto:aswtcai@ntu.edu.sg
http://www.cs.wisc.edu/condor/dagman/
http://software.sci.utah.edu/scirun.html
http://www.sciencedirect.com/science/journal/13837621
http://www.elsevier.com/locate/sysarc


techniques for mobile agnets (MAs) can be classified into indirect
and direct coordinations. In indirect coordination, agent inter-
acts with a shared third party for subjob result sharing [8]. There
is no explicit communication between two mobile agents execut-
ing subjobs. That is, a subjob obtains the locations of its predeces-
sors’ execution results through accessing the shared memory.
Indirect coordination can be further categorized into co-residing
coordination and global shared memory based coordination.

When the co-residing coordination technique is used, two MAs
interact only when they co-reside on the same host. MA interaction
is performed either through a shared local memory associated with
the hosting environment (e.g., blackboard based [10], whiteboard
based [5], and meeting oriented [10] techniques) or through intro-
ducing an additional local agent in the co-residing host (e.g., con-
strained rendezvous coordination proposed in [9]). These kinds of
coordination techniques are fully decentralized. The increased net-
work traffic produced by highly communicative agents, e.g., nego-
tiating agents, in large distributed systems can be reduced by
allowing agents to meet at the same host before commencing com-
munication. A runtime decision making between the remote com-
munication and the migration has been proposed in [29], using the
prediction model inspired by the inductive reasoning and the
bounded rationality principles [4]. However, they may not be suit-
able for data-intensive computations. During the course of a job
workflow execution, a MA may need to communicate many other
MAs for the locations of the required subjob execution results,
especially when a subjob has a large set of predecessors. Compared
to the direct coordination techniques (to be discussed later),
requiring two distributed MAs to move to the same host for coor-
dination may introduce more overhead for the job workflow
execuiton.

Global shared memory-based coordination can be classified into
middle agent-based coordination [24] (which is also named as client/
server-based coordination) and Linda like coordination [10]. LIME [28]
is an extension of the linda like approach. It adopts an effective
context-awareness [7] mechanism and facilitates an agent with
an effective responding to context changes so as to improve its
adaptability. When these coordination techniques are applied, after
a subjob completes its execution, the location of its result needs to
be published in a global shared memory. The subjob’s successors
can then obtain the location through accessing the shared memory.

When a direct coordination technique is used, MAs interact
with each other directly or with the resources that belong to the
interacting MAs [8]. When direct coordination takes place, an ex-
plicit communication between agents is initiated, i.e., the mobile
agent must explicitly name its partner for a communication before
it takes place. After a subjob completes its execution, its corre-
sponding MA will notify partner MAs the location of the subjob’s
execution result, so that the subjob’s successors can locate the re-
sult. Depending on the mechanism for locating communication
partners, existing direct coordination techniques are classified into
centralized lookup infrastructure-based coordination and decentral-
ized coordination.

In centralized lookup infrastructure-based coordination, a cen-
tralized server is used for MAs’ location update and retrieval. An
MA keeps known partners’ location information. It contacts the
partners using the known locations first, and contacts the central-
ized server for the up to date partner location only when it finds
that its partner’s location is out of date (e.g., when the partner is
unreachable). According to how an MA locates known partners,
this type of coordination techniques can be classified into home-
based coordination [27], forwarding-based coordination [12] and
hierarchical-based coordination [32].

� The home-based approach simply adopts a centralized discovery
server to look up the agent’s current location. The centralized

discovery server is named as ‘‘home” and maintains a dynamic
name and location database of the MAs.

� The forwarding-based approach keeps a forwarding pointer to
the next host of its itinerary on the current host of the MA. Each
sender has to know its communication partner’s original host,
on which the communication partner is created. A global server
is usually used to maintain this information. The frequent
updating of location caused by agent migration is eliminated
in this method, which reduces traffic around the server. There
are three important implementations of forwarding-based coor-
dination: sendbox-based scheme, proxy-based scheme, and mail-
box-based scheme. In the sendbox scheme [26], each
computational resource exploits a sendbox to offer the message
sending and forwarding capability for current resident agents. In
the proxy-based scheme [19], each agent is associated with a
proxy. If an agent, say sender agent, wants to communicate with
another agent, say receiver agent, it must first obtain a proxy to
the receiver agent. The proxy of the receiver agent routes the
message to its corresponding agent.In the mailbox-based
scheme [12], each agent is equipped with a mailbox that buffers
the messages sent to it. The mailbox itself is also a mobile object.
But it is a reactive mobile object with less migration frequency
than the MA and can be located on a different host to where
the MA is located. The sender sends messages to the receiver’s
mailbox, and the mailbox forwards the message to MA based
on the pull or push mechanism. A centralized server can be used
to keep track of the location of the mailboxes. An improved
approach has been recently proposed to enable the urgent
message get priority processing for mailbox-based approach
[13].

� The hierarchical-based approach organizes the discovery servers
in a hierarchical fashion, e.g., a tree in which MAs are treated as
leaves. Internal nodes of the tree maintain names of agents with
their corresponding locations.

The decentralized coordination includes flooding-based coordi-
nation [20], distributed hash table (DHT)-based coordination [22],
and contact list-based coordination [30]. When these coordination
techniques are adopted, an MA locates its partners using either lo-
cally maintained information or a flooding technique.

� Using the flooding-based approach, the sender broadcasts an
agent discovery request to all of its neighbors, and then the dis-
covery requests will be generated by these neighbors until the
destination partner agent is located. This coordination technique
generates excessively flooding messages which will degrade the
overall system’s performance considerably and cause a large
amount of traffic over the network.

� Using the DHT-based approach, a community is formed for each
group of cooperative agents. An MA would keep track and main-
tain partial states of a global structure which represents the
member location of the community. No discovery infrastructure
is involved. However, with dynamic MA replication, disposal,
and migration,3 the maintenance of the DHT overlay is costly.
In addition, the average number of hops required for sending a
message in this approach is in the order of log n (where n is the
number of computational resources), this can increase the time
for message delivery.

� Using the contact list-based approach, each MA maintains a list
of all its partners’ locations. Before an MA is migrated or dis-
carded, it will notify its partners so that they can update their
contact lists accordingly. In order to ensure the message is
received by the partners, the MA cannot be migrated until it gets

3 These concepts will be further described in Section 3.1.

Y. Feng, W. Cai / Journal of Systems Architecture 54 (2008) 944–956 945



https://isiarticles.com/article/21815

