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a b s t r a c t

Vibration caused by friction, termed as friction-induced self-excited vibration (FSV), is harmful to engi-
neering systems. Understanding this physical phenomenon and developing some strategies to effectively
control the vibration have both theoretical and practical significance. This paper proposes a self-tuning
active control scheme for controlling FSV in a class of mechanical systems. Our main technical contribu-
tions include: setup of a data mining based neuro-fuzzy system for modeling friction; learning algorithm
for tuning the neuro-fuzzy system friction model using Lyapunov stability theory, which is associated
with a compensation control scheme and guaranteed closed-loop system performance. A typical mechan-
ical system with friction is employed in simulation studies. Results show that our proposed modeling and
control techniques are effective to eliminate both the limit cycle and the steady-state error.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Friction-induced self-excited vibration (FSV) is a complex and
nonlinear physical phenomenon with some uncertainties. Friction
and vibration are almost ubiquitous in real life. Sometimes they
can be beneficial to us under special circumstances. Such as, fric-
tion can be utilized in automotive brakes and vibration can be ap-
plied in nuclear magnetic resonance. However, friction usually
causes degradation of system performances in most of the
mechanical systems. In the case that the friction term critically im-
pacts on mechanical dynamics, its presence may induce limit cy-
cles, steady-state errors and other undesirable effects. In general,
vibration generates additional dynamic loads to degrade the sys-
tem performances. Thus, it is significant to reduce or eliminate
vibration caused by friction force for performance improvement.
From engineering viewpoints, it is meaningful to understand the
FSV mechanism and develop effective control algorithms (Chatter-
jee, 2007; Das & Mallik, 2006; Sinou & Dereure, 2006). Recently, ac-
tive control techniques have received considerable attention from
mechanical and control engineers. These active control schemes
have been widely applied for precision instrumentation, aerospace,
transportation systems and mechanical engineering. In vibration
control, active control schemes use sensors to measure the feed-
back signals, and generate control actions using some special

control strategies for driving the actuator to reduce or eliminate
vibration.

To eliminate or inhibit the FSV, it is necessary to introduce a
friction compensation term in controller design. Therefore, effec-
tive modeling of the friction force play a key role to control the
FSV in mechanical systems. It has been experimentally verified
that the friction force is a nonlinear function of both the velocity
and the direction of rotation or motion. Readers may refer to
empirical models reported in the literature (Armstrong & Canudas
De Wit, 1994; Bender, Lampaert, & Swevers, 2005; Canudas De Wit,
Ollson, Astrom, & Lischinsky, 1995; Dupont, Hayward, Armstrong,
& Altpeter, 2004; Kim & Ha, 2004; Rizos & Fassois, 2009; Swevers,
Al-Bender, Ganseman, & Prajogo, 2000). From an analysis of these
exiting friction models, we can see that the mathematical approach
has difficulty in dealing with the problem of universal friction
modeling due to the nonlinearity, uncertainty and time-varying
nature of friction. Thus, it is useful to explore data-driven ap-
proaches for modeling the friction force with an adaptation
mechanism.

Recently, fuzzy systems and neural network systems have been
successfully applied to complex systems (Jiang, Zhang, & Zhang,
2011; Rana, 2011; Selmic & Lewis, 2002; Wang, 1993; Wang,
Wang, & Chai, 2009; Wu, Lin, & Lee, 2011), where traditional ap-
proaches can rarely achieve satisfactory results due to the nonlin-
earity, uncertainty and lack of sufficient domain knowledge.
Neuro-fuzzy systems have attracted considerable attention in the
past due to their universal approximation power to nonlinear
maps, learning capability, domain knowledge embedability and
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result interpretation ability (Figueiredo & Gomide, 1999; Jang,
1992). The main merit of neuro-fuzzy systems for engineering
modeling is that we can naturally integrate both numerical data
and domain knowledge in a unified framework. The key step in
building neuro-fuzzy system is to determine the architecture of a
system, which can be done by data mining techniques. Notice that
the data-mining-based neuro-fuzzy inference system (DNFIS) are
not constructed in an optimal fashion in terms of parameter set-
ting. Therefore, it is important to develop learning algorithms for
tuning the parameters (weights) of neuro-fuzzy inference system
(ANFIS). Traditional learning techniques for learner models, such
as the well-known error back- propagation algorithm and its vari-
ations, are derived from various numerical optimization tech-
niques. Although some theoretical results on adaptive neural
control can be read in literature, it is rare to find reports that asso-
ciate the learning algorithm with control system’s performances.

In this paper, we try to make a link between the learning algo-
rithm of neuro-fuzzy system and the stability performance of a
closed-loop dynamical system. Concretely, we employ an im-
proved data mining algorithm (Wang, Wang, & Chai, 2010) to ex-
tract a set of fuzzy rules. Based on these generated fuzzy rules, a
neuro-fuzzy system is constructed for approximate the unknown
friction force. Then, an active control scheme, the proportional-
derivative (PD) controller with a friction compensation term, is ap-
plied to control the dynamical system. To eliminate the limit cycle
and the steady-state error caused by frictions in the systems, a
updating rule for the weights of the neuro-fuzzy system is derived
from Lyapunov stability theory. It is shown that such a learning
algorithm can guarantee the control performance.

The remainder of the paper is organized as follows: Section 2
gives some information on description of mechanical systems used
in this study and some observations on numerical analysis of the
FSV. Section 3 mainly describes a data-driven approach for model-
ing the friction force using neuro-fuzzy systems. Section 4 pro-
poses an updating rule for tuning the weights of the neuro-fuzzy
system according to the Lyapunov stability theory, which is associ-
ated with a PD control scheme with a friction compensation term.
Section 5 reports simulation results on a one-dimensional motion
dynamics of a mass which moves on a surface with friction to illus-
trate the effectiveness of our proposed neuro-fuzzy system model-
ing and active control techniques. Section 6 concludes this work.

2. Friction-induced self-excited vibration

The free body diagram of a block of mass m, placed on a moving
belt and constrained by a spring of stiffness k, is shown in Fig. 1.
The non-dimensional equation of motion of a single-degree-
of-freedom undamped oscillator with the proposed control is

governed by the following differential equation (Hinrichs,
Oestreich, & Popp, 1998; Zjinjade & Mallik, 2007):

mx00ðsÞ þ kxðsÞ ¼ Ff ðvÞ þ uc; ð1Þ

where m is the mass of the block, x is the displacement of the mass,
uc is the control signal, Ff(v) is the friction force, v is the relative
velocity.

Let t ¼ x0s; x0 ¼
ffiffiffi
k
m

q
and

_x ¼ dx=dt ¼ x0=x0;

€x ¼ dð _xÞ=dt ¼ x00=x2
0:

�
ð2Þ

System (1) can be rewritten as:

€xðtÞ þ xðtÞ ¼ FðvÞ þ u; ð3Þ

where v ¼ v0 �x0 _x, v0 is the velocity of the belt, F(v) = Ff(v)/k,
u = uc/k.

Friction-induced vibration, a type of self-excited vibration, is a
serious problem in many engineering systems. The friction force
acting on the system provides the energy needed to maintain these
vibrations. The nature of the friction force, dependent on the rela-
tive (slip) velocity, time, temperature, material properties, geome-
try and roughness of sliding surfaces, normal load etc., is really
complex. Modeling of friction force and friction vibration has at-
tracted the attention of both physicists and engineers. To under-
stand the physical phenomenon of the friction vibration, some
numerical simulations were carried out using two typical friction
models, i.e., the Coulomb friction model and Stribeck friction
model. The Coulomb friction model can be expressed as:

FðvÞ ¼ FcsgnðtÞ; ð4Þ

where the friction force Fc is proportional to the normal load, i.e.,
Fc = lFN. Notice that the model (4) is an ideal relay model. The
Coulomb friction model does not specify the friction force for zero
velocity.

The Stribeck friction model describes the steady-state friction
behavior in sliding regime and hence are dependent on the sliding
velocity v. This friction model incorporates Coulomb, viscous, and
Stribeck friction:

FðtÞ ¼ Fc þ ðFs � FcÞe�jt=ts jds þ Ftt; ð5Þ

where ts is called the Stribeck velocity and Fv is the viscous friction
coefficient.

For u = 0 one has the case of pure self excitation in (3). In our
simulations, Matlab command (ode45) was used to obtain
numerical solutions corresponding to these friction models. The
following parameters were used in the simulations: m = 0.6 [kg],
x0 = (�0.02,0.02), FN = 15.0 [N], v0 = 0.3 [m/s], k = 763 [N/m].
Fig. 2 depicts the Coulomb and the Stribeck friction-induced limit
cycles with various parameters in (3)–(5).

These numerical results demonstrate the physical phenomena
of the friction vibration. To eliminate or inhibit the friction-
induced self-excited vibration, it is important to add a compensa-
tion term based on friction model in PD controller design. But
the existing friction models are parameterized and will not be able
to characterize accurately all types of friction under an unified
framework. Therefore, it is very necessary to make efforts on
developing data-driven-based intelligent approaches for modeling
friction force and controlling the friction vibration.

3. Modeling friction force using neuro-fuzzy systems

Modeling friction force from a collection of sampling data can
be implemented by various learner models. Usually, there are
three key steps towards to a successful modeling: data collection
and filtering; learner model identification and model parameter

Fig. 1. Mass on a moving belt system.
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