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ARTICLE INFO ABSTRACT

Available online 26 August 2008 The paper analyzes the problem of the replenishment of multiple products to satisfy
dynamic demands when the warehouse capacity or the available inventory budget is
limited. In this context the timing of replenishment lot-sizes has to be staggered to
account for the capacity conflict and to provide an effective space sharing in addition to
the solution of the trade-off between setup and inventory holding costs. We analyze
three simple heuristics. First, we review a forward algorithm that successively builds
lots by extending replenishments according to a cost-based priority rule. The second
heuristic solves the lot-sizing problems independently for each product in a first step
and then resolves capacity violations by a smoothing mechanism. Further, this paper
adapts a heuristic for single-item uncapacitated lot-sizing that successively improves an
initial lot-for-lot schedule by combining replenishments according to a cost savings-
based priority rule to the multi-item capacitated problem. The performance of the three
simple methods is compared in an extensive numerical study and benchmarked against
the solution of a mixed-integer programming approach. The results show the different
ability of the approaches to simultaneously account for the individual lot-sizing
problems and the lot-staggering problem across multiple products. Especially the
savings approach appears to provide better results for a broad range of problems,
especially for large, tightly capacitated problems with high demand variability.
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1. Introduction this context, three main aspects of multi-product lot-
sizing coordination are extensively discussed in the

Single-product dynamic lot-sizing referring back to the literature, (i) joint replenishment problems (JRPs), (ii)

seminal paper by Wagner and Whitin (1958) and diverse
lot-sizing heuristics are included in today’s operations
management textbooks and material requirements plan-
ning software systems. The interdependencies between
different items are mostly considered in dependent
demand systems like MRP and DRP systems where the
(vertical, multi-stage) interaction results from the bill
of material structure. In this paper, we focus on horizontal
single-stage interaction between multiple products. In
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capacitated lot-sizing and scheduling problems, and (iii)
warehouse scheduling problems. The focus of this paper
will be on discrete time, finite horizon, and deterministic
demand models which represent straightforward exten-
sion of Wagner and Whitin (1958) to the multi-product
environment. Reviews of dynamic lot-sizing heuristics are,
e.g., Wemmerlov (1982) and Zoller and Robrade (1988).
In the context of procurement, the JRP analyzes the
replenishment of multiple products which are connected
by a joint cost structure. Besides the individual setup and
inventory holding costs for each product, a major setup
cost for any replenishment (regardless of the product and
the number of involved products) connects the individual
decisions. For a review on deterministic and stochastic,
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as well as continuous time and discrete time, and static
versus dynamic models for the JRP, see Aksoy and Erenguc
(1988). Boctor et al. (2004) present alternative mixed-
integer linear programming formulations and give a compar-
ison of several heuristics for the discrete time, deterministic
demand case.

If the interaction between multiple products results
from competition for a (capacitated) manufacturing
facility, lot-sizing and scheduling problems have to be
solved. Due to the challenging research issues and the
practical relevance in various industries the majority of
coordinated lot-sizing models and algorithms has evolved
in this field, for reviews see De Bodt et al. (1984), Bahl
et al. (1987), Maes and Van Wassenhove (1988), Kuik et al.
(1994), Drexl and Kimms (1997), and Pochet and Wolsey
(2006).

If the inventories resulting from batch replenishments
compete for limited warehouse capacity or a limited
budget, replenishment quantity and timing decisions for
the different products have to be coordinated. For the case
of shared warehouse space (in contrast to space dedicated
to each product) the replenishments have to be staggered
over time such that the space released by the demands for
other items can be used when storing the next incoming
batch for a product. This problem is called the warehouse
scheduling problem. Many contributions exist for contin-
uous time, constant demand models and are straightfor-
ward extensions of the EOQ model, e.g., for the dedicated
capacity case Johnson and Montgomery (1974), for shared
capacity with staggered orders on a common cycle, Page
and Paul (1976), and for more general policies Gallego
et al. (1996) and Hariga and Jackson (1996). Extensions to
stochastic demand are suggested by Minner and Silver
(2005, 2007).

Only a few contributions deal with the deterministic,
discrete time, dynamic demand problem under limited
warehouse capacity. Love (1973) analyzes the single-item
problem with a concave cost structure and proposes a
dynamic programming algorithm with O(T?) complexity, T
denoting the number of (discrete) time periods. Gutiérrez
et al. (2003) present an improved algorithm and discuss
special cases that allow for algorithms with O(T) complex-
ity. The optimality properties derived for concave costs in
the single-item case generalize to the multi-item problem
as shown by Richter (1975) and Dixon and Poh (1990). For
the special case of linear costs as considered in most
practical applications, this property reduces to the well-
known zero-inventory property as in the Wagner-Whitin
model where a product is only replenished if the
inventory level at the beginning of a period equals zero
and if units are replenished, the corresponding batch
includes the demands of consecutive periods.

Giinther (1990, 1991) uses this property to successively
extend the time coverage of an item’s procurement lot in a
forward algorithm based on a cost priority criterion to
select between the products. Within a linear program-
ming-based relaxation algorithm, Dixon and Poh (1990)
suggest a smoothing heuristic that first determines
independent lot-sizes for each product and in a second
step removes infeasibilities by shifting replenishments.
These methods are presented in more detail in Section 3.

Both methods have in common that they proceed in a
forward manner. This paper proposes a different method
that is based on the savings idea known from vehicle
routing and applied to the single-item, uncapacitated
dynamic lot-sizing problem by Axsdter (1980). Here,
the largest savings from combining replenishments are
implemented which implicitly regards the lot-staggering
problem by a flexible rather than a forward combination
of demands. Karni (1981) uses the same idea and suggests
an extension to single-item problems with limited
production capacities.

In Section 2 we present a new mixed-integer linear
programming formulation for the warehouse scheduling
problem. In Section 3 we review two existing heuristic
approaches and suggest a new heuristic based on the
savings idea in Section 4. The approaches are compared in
an extensive numerical study in Section 5.

2. Model formulation

In this section we present a mixed-integer program-
ming formulation that is based on a fractional representa-
tion of the decision variables. For the solution of the
mixed-integer-linear program this will lead to tighter
lower bounds. Let N denote the number of products, i =
1,2,...,N and T the number of periods, t =1,2,...,T. The
problem is modelled as a deterministic discrete time,
finite horizon planning problem with given demands d;
for product i in period t. Backorders are not permitted.
Each replenishment for a product at the beginning of a
period is associated with a setup cost S;. We assume that
there exist no interdependencies between costs for the
individual products as in the JRP. Replenishment lead
times are assumed to be negligible. Inventories at the end
of a period are subject to linear inventory holding cost h;
per unit and unit of time. Without loss of generality we
assume zero initial and final inventories. The warehouse
capacity W is assumed to be constant over the planning
horizon. A unit of each product i requires a; warehouse
capacity units.

There exist different assumptions concerning the
instant of time when the warehouse capacity constraint
has to hold. Let «; denote the capacity requirement of
current period demand. If o; = 1, the inventory capacity
constraint has to hold at the beginning of each period
whereas if o; = 0, it is assumed that the current demand
in period t does not affect the warehouse capacity. An
alternative interpretation for o; = 0 or 1 is that inventory
depletion for item i occurs either at the beginning or at the
end of the period.

Let u;; denote the binary indicator variable whether an
order is placed for item i in period 7 or not. The decision
variables x;;; denote the fraction of demand for item i in
period t that is replenished in period 7. Let h;;; denote the
holding cost if the entire demand for item i in period t is
replenished in period 7, i.e.

hie = hi(t — Ody, i=1,2,..., N; 1=1,2,...,T;
t=t1t+1,...,T. (1)
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