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a b s t r a c t

Traditionally, optimization for large-scale multi-level lot sizing (MLLS) problems always
encountered heavy computational burden. Scholars also indicated that ‘‘whatever the
optimal method chosen to solve the MLLS problem, standard optimization packages were
still faced with computer memory constraints and computational limits that prevented
them from solving realistic size cases’’. Therefore, the main purpose of this paper is to
propose an optimal method to reduce the computer memory while solving the large-scale
MLLS problems. The optimal method is designed to implement on a database entirely
because the demand for computer memory can be reduced significantly by means of the
utilization of database storage. An example is given to illustrate the proposed method and
computation capability is tested for the MLLS problems with up to 1000 levels and 12
periods.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

In a production-inventory system, practitioners always desire to make a set of production plans (PPs) for minimizing
the sum of setup costs and inventory holding costs. By virtue of an optimal set of PPs, practitioners can decide how many
quantities have to be produced in which periods at each level. However, this is a classical multi-level lot sizing (MLLS)
problem.

Till now, the MLLS problems have received considerable attentions in the literature [1–3]. The two fundamental optimal
methods for the MLLS problem with a serial production structure (each item has at most one direct predecessor and one
immediate successor), one was Zangwill’s [4] backward recursive algorithm and the other was introduced by Love [5].
Following that, various production structures were addressed and some optimal methods had also been proposed [1,6,7].
As a general production structure (each item has several direct predecessors and immediate successors) is considered, no
optimal method is suitable for the MLLS problems over 50 items and exceeding 24 periods in size [8]. For example, one
famous optimal methods, branch-and-bound-based algorithm, proposed by Afentakis and Gavish [1] handled the MLLS
problem with up to 40 items and 12 periods for a general production structure and 106 items and 12 periods for a assembly
production structure (each item has several direct predecessors but only one immediate successor). Dellaert and Jeunet [8,9]
also pointed out that ‘‘whatever the optimal method chosen to solve the MLLS problem, standard optimization packages were
still faced with computer memory constraints and computational limits that prevented them from solving realistic size cases’’.
However, if the MLLS problem is a large-scale size case, it will be one of the most difficult problems for decision making.

Because of the computational burden of optimization [3,10,11], scholars were usually toward creating the heuristic
methods [8–17]. Simpson and Erenguc [3] found that many heuristic studies often neglected the use of the optimal solution
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as a benchmark by which to evaluate heuristics. Without an exact benchmark, scholars must evaluate heuristic techniques
relative to other heuristic techniques [3]. From this argument, with respect to solving the large-scale MLLS problems, we
are motivated to develop an optimal method rather than a heuristic method.

SomeMLLS heuristic methods [12–14] typically adapted the single-level solution methods, i.e. Wagner–Whitin [18] and
Silver–Meal [19] procedures. Blackburn and Millen [13] were the pioneers in introducing a heuristic method to solve the
MLLS problems by ‘‘improving’’ the single-level solutionmethods. One significant result of Blackburn andMillen’s [13] study
is that ‘‘deviation from the optimality by the heuristics is highly correlated with the ‘depth’ of the production structure’’ namely
the more the level, the larger the deviation from the optimality [12,13]. That is, even if a serial production structure is taken
into account, as it is a large number of levels, how to explore an optimal solution exactly is still a significant issue.

In sum, if theMLLS problemwas considered as a large-scale size case, the past research papers indicated that (1) using the
optimal methods to deal with it would face the computer memory constraints [8,9]; and (2) adopting the heuristic methods
to handle it will get a large deviation from the optimality [12,13]. Therefore, the main purpose of this study is to propose
a solution method to reduce the computer memory for exploring an optimal solution (rather than a sub-optimal solution)
while solving the large-scale MLLS problems.

2. Notation and statement of the problem

2.1. List of notations

In this paper, the following notations are adopted:

m level index (m = 1, 2, . . . ,M);
t period index (t = 1, 2, . . . , T );
sm,t setup cost in period t at levelm;
hm,t unit inventory holding cost from period t to period t + 1 at levelm;
dm,t demands in period t at levelm;
qm,t , the produced quantities in period t at levelm;
Im,t the inventory level of levelm at the end of period t;
cm,m+1 c unit of demands have to be produced at levelm in order to produce one unit of demands at levelm + 1, namely

‘‘production ratio’’;
δm,t Boolean variable: δm,t = 1 indicating a production policy adopted in period t at level m; δm,t = 0 meaning an

inventory policy adopted in period t at levelm;
g row index corresponding to the created Solving-Process data sheet (g = 1, 2, . . . , 2T−1);
ppm,g the gth feasible PP at levelm (the feasible PP is made up of a series of production policies and inventory policies);
c(ppm,g) total cost of ppm,g ;
osm,g an optimal set of PPs composed of various g , which denote pp1,g , pp2,g , . . . , ppm,g ;
Rm,g (v, j) (1) at the first round to implement the solution method: a set of g represent various ppm−1,g which can connect

with a particular ppm,g (2) after the first round to implement the solution method: a set of g represent various
osm−1,g which can connect with a particular ppm,g ;

c(Rm,g (v, j)) (1) at the first round to implement the solution method: the minimal value of various ppm−1,g included in
Rm,g (v, j) (2) after the first round to implement the solutionmethod: theminimal value of various osm−1,g included
in Rm,g (v, j);

c(osm,g) total cost of osm,g ;
c∗ the minimal total cost of the MLLS problem.

2.2. Problem description

In the past literature, in order tomake the lot sizing problems fit the real-life circumstancesmore closely, several practical
situations had been taken into account by scholars, i.e. quantity discount [20], capacity constraints [21], changes of setup
cost [22–24], etc. In this study, the large-scaleMLLS problem is discussedwith a serial production structurewithout capacity
constraints and lead times are zero, but bill-of-material (BOM) concept is taken into account. Even though to incorporate
capacity constraints into the MLLS problems makes the lot-sizing problems fit a practical circumstance more closely, but it
does not mean that the uncapacitated problem is an out-of-date problem [17]. Pitakaso et al. [25] indicate that, in practice,
uncapacitated lot-sizing models continue to be largely used since the implementation of capacitated approaches requires
much datawhich firms are often reluctant to collect ormaintain. Han et al. [17] also conclude that ‘‘the uncapacitated problem
still has significance’’. In addition, Vickery and Markland [15] also claim that ‘‘developing the solution methods to determine an
optimal set of PPs in a serial production system is beneficial to process industry firms particularly since they are often characterized
by serial-type production systems and batch-flow manufacturing processes’’. Therefore, to develop an optimal method for
solving the large-scale MLLS problem with a serial production structure is worth undertaking.

In a production-inventory system, each operation is assumed to take place in a given level, and only one operation takes
place in a given level [4]. The demands at level m + 1 are always supplied immediately by the yields at level m [4,5],
meaning that the demands at all levels cannot be complemented by external quantities except the first level.Without loss of
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