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In this paper, an effective approach based on the variable neighborhood search (VNS) algorithm is pre-
sented to solve the uncapacitated multilevel lot-sizing (MLLS) problems with component commonality
and multiple end-items. A neighborhood structure for the MLLS problem is defined, and two kinds of
solution move policies, i.e., move at first improvement (MAFI) and move at best improvement (MABI),

are used in the algorithm. A new rule called Setup shifting is developed to conduct a more efficient neigh-
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borhood search for the MLLS problems. Computational studies are carried out on two sets of benchmark
problems. The experimental results show that the VNS algorithm is capable of solving MLLS problems
with good optimality and high computational efficiency as well, outperforming most of the existing algo-
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1. Introduction

The multilevel lot-sizing (MLLS) problem concerns how to
determine the lot sizes for producing/procuring multiple items at
different levels, which are quantitative interdependent, so as to
minimize the production/procurement setup cost and inventory-
holding cost in the whole planning horizon. High quality solution
of the MLLS problem can improve efficiently the operation of mod-
ern manufacturing and assembly processes. Algorithms providing
optimal solutions exist for the problem; however, only small in-
stances can be solved in reasonable time because the problem is
NP-hard (Steinberg & Napier, 1980). Several optimization formula-
tions and algorithms have been developed to solve variant MLLS
problems. Early dynamic programming formulations used a net-
work representation of the problem with a series structure (Zhang-
will, 1968, 1969) or an assembly structure (Crowston & Wagner,
1973). Other approaches involve the branch and bound algorithms
(Afentakis, Gavish, & Kamarkar, 1984, 1986) that used a converting
approach to change the classical formulation of the general struc-
ture into a simple but expanded assembly structure. As the MLLS
problem is so common in practice and the solution plays a funda-
mental role in MRP system, many heuristic approaches have also
been developed, consisting first of the sequential application of
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the single-level lot-sizing models to each component of the prod-
uct structure (Veral & LaForge, 1985; Yelle, 1979), and later, of
the application of the multilevel lot-sizing models. The multilevel
models quantify items interdependencies and thus perform better
than the single-level based models (Blackburn & Millen, 1982,
1985; Coleman & McKnew, 1991).

In recent years, the so-called meta-heuristic algorithms have
been developed to solve the MLLS problems, such as the hybrid ge-
netic algorithm (Dellaert & Jeunet, 2000; Dellaert, Jeunet, & Jonard,
2000), the simulated annealing (Raza & Akgunduz, 2008; Tang,
2004), the particle swarm optimization (Han, Tang, Kaku, & Mu,
2009), the soft optimization approach based on segmentation
(Kaku, Li, & Xu, 2010; Kaku & Xu, 2006), and the ant colony optimi-
zation system (Almeder, 2010; Pitakaso, Almeder, Doerner, & Hartlb,
2007). It have been reported that these algorithms can provide
highly cost-efficient solutions within reasonable time. However,
most of the meta-heuristic algorithms, such as the hybrid genetic
algorithm (HGA), the particle swarm optimization (PSO) and the
ant colony optimization (ACO), are highly technology-based and
require complicated programming skills, which as a consequence
might deter many potential users, not mentioning the mathemat-
ical complexity of these algorithms. The soft optimization (SO)
approach may be easy for implementation, but is not very effective
in finding solutions with good qualities.

In this paper, we present a succinct approach based on the var-
iable neighborhood search (VNS) algorithm to efficiently solve the
uncapacitated MLLS problem. The VNS algorithm, initiated by
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Mladenovic and Hansen (1997), is a top-level methodology for
solving the combinatorial optimization problems. Since its princi-
ple, as to be shown in Section 3 is very simple and easily under-
stood and implemented, the VNS algorithm has been successfully
applied to solve various kinds of optimization problems, such as
Travel Salesman Problem (Mladenovic & Hansen, 1997), P-media
problem (Fathali & Kakhki, 2006; Hansen & Mladenovic, 1997),
and Vehicle Routing Problem (Chen, Huang, & Dong, 2010; Imran,
Salhi, & Wassan, 2009). The success of VNS is largely due to its
enjoying most of the 11 desirable properties of meta-heuristics
generalized by Hansen, Mladenovic, and Pérez (2008), such as sim-
plicity, user-friendliness, efficiency, effectiveness, etc. Since the
MLLS problem is observed to share common characteristics, e.g.,
binary decision variables, with the problems solved successfully
by VNS based algorithms, it is promising to develop a VNS based
algorithm for efficiently solving the MLLS problem. To our best
knowledge, this work is a first attempt to solve the classical MLLS
problem by using a VNS based algorithm and fortunately, the VNS
algorithm does not disappoint us, showing its broad applicability
again on combinatorial optimization problem.

In practice, various models on the MLLS problems have been
developed to match the practical production environments, such
as the capacitated lot-sizing model with variable technology by
Pratsini (2000). In this paper, we focus on the basic model of the
MLLS problem that is featured as uncapacitated, with time-invari-
ant costs, of finite horizon, with no backlogging, and with static
requirements on end-products. To examine the performance of
our new algorithm, different kinds of product structures are con-
sidered in the experimental studies. The experiments are con-
ducted on two sets of benchmark problems — 96 small-size
problems and 40 medium-size problems, to compare the new
algorithm with the existing hybrid genetic algorithm (HGA)
(Dellaert & Jeunet, 2000), the MAX-MIN ant system (MMAS) algo-
rithm (Pitakaso et al., 2007), and the parallel GA algorithm (PGA)
(Homberger, 2008). The results show that the VNS algorithm is
very competitive since it can on average find better solutions in
less computing time.

The rest of the paper is organized as follows. Section 2 describes
the MLLS problem. Section 3 explains the principle of the VNS algo-
rithm, the definition of the neighborhood structure for the MLLS
problem, a rule named setup shifting for considering interdepen-
dencies, and the scheme of the new VNS algorithm for MLLS prob-
lem. In Section 4, computational experiments are carried out to test
the new algorithm against existing algorithms. Finally, in Section 5,
we conclude the paper.

2. The MLLS problem

The MLLS problem under investigation is considered to be unca-
pacitated, discrete-time, occurring in a multilevel production/
inventory system with general product structure. We assume that
external demands for the end-items are known up to the planning
horizon, and backlog is not allowed. Suppose that there are m
items and the planning horizon is divided into n periods. The pur-
pose is to find the optimal production setups and the lot sizes of all
items for the minimization of total setup cost and inventory-hold-
ing cost over the n-period planning horizon, while ensuring that all
external demands must be met.

The MLLS problem can be formulated as an integer optimization
model. We use the notations in Dellaert and Jeunet (2000) to for-
mulate it as follows.

i: Index of item,i=1,2,...,m,

t: Index of period, t=1, 2, ..., n,

h;: Unit inventory-holding cost per period for itemi,
s;: Setup cost for item i,

I';: The set of immediate successors of item i,

I;': The set of immediate predecessors of item i,

D;:: Requirements for item i in period t,

I;;: Inventory level of item i at the end of period ¢,

l;: Leading time to assemble, to manufacture or to purchase
item i,

Dir: Production quantity for item i in period ¢,

M: A large number.

X;e: Binary decision index representing the setup of item i in per-
iod t,i.e., x; = 1 if item i is setup in period t and x;, = 0 otherwise.

The objective function is the sum of setup cost and inventory-
holding costs for all items over the planning horizon, denoted by
TC (total cost), which is formulated as follows.

TC = ; ;(hi i+ Si- Xig). M

The MLLS problem is to minimize TC subject to the following
constraints.

i = i1 + pi — Dig, (2)

Diy = Zci.j “Pjesy vill's # ¢, 3)
Jeri

Pir—M- X <0, 4)

lig >0, p; >0, x,€{0,1}, Vit (3)

In the above constraints, Eq. (2) expresses the inventory flow con-
servation constraint for item i. Note that if item i is an end product
(characterized by I'; = ¢), its demand is exogenously given, whereas
if it is a component part (I'; # ¢), its demand is defined by the pro-
duction of its successors (items belonging to I';). Eq. (3) guarantees
that the demand for item i in period t results from the exact sum of
lot sizes of its successors (items belonging to I';) multiplied by pro-
duction ratio with leading time correction. Constraint (4) guaran-
tees that a setup cost is incurred when a production is arranged.
Constraint (5) states that backlog is not allowed, and production
is either positive or zero, and the setup decision variables are
binary.

Basically, in the optimal solution of a MLLS problem, there
exists

Xig - lig.1 =0, (6)

which indicates that any optimal lot size must cover the total de-
mand of an integer number of periods and the production setup
happens only when the inventory level drops to zero. Commonly,
for all items, since initial inventory levels are zero (indicated by
I;p = 0), their first periods with positive demand must keep being
setup for production/purchase, to ensure that the solution is always
feasible.

For pure assembly structure,! the inner corner property had been
observed in the optimal solution of MLLS problem with zero leading
time (Tang, 2004), which was reported to enhance the solution effi-
ciency by using the following constraint.

Xie = X, VkeI7. (7)

The difficulty of solving MLLS problem has been recognized for
decades and is still a challenge of today because the size of its solu-
tion space will exponentially accelerate to be considerably huge as
the problem’s size increases. What is more, nowadays the MLLS
problems are continuously increasing in both product complexity
and problem size. Although the feasible solution space may be

! In pure assembly structure, each item has multiple immediate predecessors but
has at most only one direct successor; in general structure, each item may have
multiple immediate predecessors and multiple direct successors.



ISIf)rticles el Y 20 6La5 s 3l OISl ¥
Olpl (pawasd DYl gz 5o Ve 00 Az 5 ddes 36kl Ol ¥/
auass daz 3 Gl Gy V

Wi Ol3a 9 £aoge o I rals 9oy T 55 g OISl V/

s ,a Jol domieo ¥ O, 55l 0lsel v/

ol guae sla oLl Al b ,mml csls p oKl V7

N s ls 5l e i (560 sglils V7

Sl 5,:K8) Kiadigh o Sl (5300 0,00 b 25 ol Sleiiy ¥/


https://isiarticles.com/article/22772

