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a b s t r a c t

Starting from the seminal intuitions that led to the developments of the Economic Order Quantity model
and of the formulation of the Dynamic Lot Sizing Problem, inventory models have been widely employed
in the academic literature and in corporate practice to solve a wide range of theoretical and real-world
problems, as, through simple modifications to the original models, it is possible to accommodate and
describe a broad set of situations taking place in complex supply chains and logistics systems.

The aim of this paper is to highlight, once more, the powerfulness of these seminal contributions by
showing how the mathematical formulation of the Capacitated Lot Sizing Problem can be easily adapted
to solve some further practical logistics applications (mainly arising in the field of coordination of
transportation services) not strictly related to manufacturing and production environment. Mathema-
tical formulations and computational experiences will be provided to support these statements.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

The history of inventory problems can be rooted back to the
Economic Order Quantity (EOQ) model presented by Harris (1913),
also known as the Wilson Lot Size formula, since it was firstly used
in practice by Wilson (1934). The EOQ model assumes the
presence of a single item whose demand is continuous (with a
constant known rate) and an infinite planning horizon. The
solution of the model is easy and provides the optimal quantity
to be ordered, balancing the setup and inventory holding costs.
However, with the same assumptions, in presence of multiple
items and capacity restrictions the model becomes NP-hard (Hsu,
1983). The Dynamic Lot Sizing Problem (in the following, gener-
ically referred to as DLSP or Lot Sizing), first proposed by Wagner
and Whitin (1958), can be considered as an extension of the EOQ
model. In this new version, on a discrete time scale, deterministic
dynamic demand and finite time horizon are considered while the
objective function is the same basic trade-off between setup and
inventory costs.

Starting from these seminal papers, further variants of the
problem have been introduced. These are mainly concerned with
the extension to the multi-item case (Barany et al., 1984), the

introduction of several conditions about the costs, limitations on
production capacities (leading to the Capacitated Lot Sizing Problem,
in the following CLSP) (Bitran and Yanasse, 1982) and possible
additional features regarding, for instance, demand uncertainty
(Brandimarte, 2006), setup costs and/or times (Trigeiro et al., 1989),
linked lot sizes (Suerie and Stadtler, 2003), alternative suppliers
(Basnet and Leung, 2005). Combinations of these aspects can provide
models with very different complexities.

Interesting reviews about models and methods to tackle Lot
Sizing problems have been published by Kuik et al. (1994), Drexl
and Kimms (1997), Karimi et al. (2003), and Jans and Degraeve
(2008), while a rich textbook on the topic has been provided by
Pochet and Wolsey (2006).

Jans and Degraeve (2008) compiled a very interesting and
complete survey devoted to describe actual and potential variants
of the problem. The authors highlight how most of them are
inspired by specific real life applications and, in particular, they
focus on a variety of industrial production planning problems.
The application of the Lot Sizing model, and its variants, to real-
world problems constitute a very active research strand
(see, for instance: Rezaei and Davoodi, 2011; Ferreira et al., 2012;
Liao et al., 2012).

In this paper we want to show how, through an appropriate
interpretation of the elements of the model, Lot Sizing formula-
tions can also be effectively used to face further practical
logistic problems, outside of the classical field of production and
manufacturing planning. Therefore, rather than providing original
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models, the aim of the paper is to show how standard formulations
can be used to support decisions in other contexts of applications;
in this sense, the more established these models are, the more
powerful and insightful will be their adaptation, as existing results
in terms of formulations and solution approaches can be easily
exploited.

The remainder of this paper is arranged as follows. In the next
section we introduce the mathematical model of the CLSP, con-
sidering the single item and the multi-item versions. Then we
illustrate a general framework indicating how these models can be
used to describe different kinds of logistic problems. In particular
three specific examples are introduced and discussed: the optimi-
zation of the departure schedule for a bus terminal; the manage-
ment of a logistic cross-dock platform; and the optimization of an
airport check-in gates configuration. For the above problems, we
explain how they can be formulated, through few adaptations,
starting from the CLSP model. Furthermore, some case studies
(related to real-world situations) are presented, showing how
these models can be solved in limited computational times and
be used as decision support tools. Finally, some concluding
remarks and directions for future research are drawn.

2. Mathematical models for Lot Sizing problems: generalities

By denoting with tAf1::Ng one of the N time buckets intro-
duced to divide the planning horizon, the following parameters
can be considered, referred to the specific time period t and to a
single product scenario:

� dt: the demand forecast;
� pt: the unit production or purchasing cost;
� ht: the unit inventory cost;
� f t: the fixed setup or ordering cost; and
� Ct: the maximum feasible lot size (capacity).

Introducing the variables

� st: stock at the end of period t;
� xt: quantity to be produced or ordered during period t;
� yt: binary variable equal to 1 if units of the product are

manufactured (or ordered) in period t (0 otherwise).

The DLSP can be formulated as follows:

min z¼ ∑
N

t ¼ 1
ðptxtþhtstþ f tytÞ ð1Þ

s.t.

st ¼ st�1þxt�dt t ¼ 1; ::;N ð2Þ

st ¼ 0 t ¼ 0 and t ¼N ð3Þ

xtrCtyt t ¼ 1; ::;N ð4Þ

stZ0; xtZ0; yt ¼ 0=1 t ¼ 1; ::;N ð5Þ
The objective function (1) represents the total management

costs, including the production (and/or purchasing), inventory and
setup or ordering costs. Constraints (2) reproduce the demand
satisfaction and inventory balance constraint for each period.
Conditions (3) impose that inventory levels at the beginning and
the end of the planning horizon are equal to zero. Constraints (4)
allow a positive production (constrained between 0 and a value Ct)
in period t if and only if the setup variable is equal to 1; in
particular, the problem turns out to be uncapacitated for large
values of Ct (CtZ∑k ¼ t;Ndk, for every specific time period t).
Constraints (5) express the non-negativity and binary restrictions
on the variables. As known, model (1)–(5) has O(N) constraints in
O(N) variables.

Wagner and Whitin (1958), in order to avoid trivial solutions to
the problem, introduced a condition on the production and
inventory costs, i.e. htþpt�ptþ1Z0 (Wagner–Whitin cost condi-
tion). This condition assures that if setups occur in both periods t
and tþ1, it is more convenient to produce directly in period tþ1,
as there is no speculative reason for early production (Pochet and
Wolsey, 1995). Zangwill (1966) further clarified that inventory
costs ht and setup/ordering costs f t should be intended as non-
negative.

Zangwill (1969) provided an interesting and fruitful interpreta-
tion of the problem as a fixed charge network problem. In Fig. 1,
a network representation for a generic instance with N periods is
provided. The flow on the generic arc ð0; tÞ represents the
production in period t (xt) while flow on arc ðt; tþ1Þ reproduces
the stock at the end of period t (st). This way, constraints (2) can be
interpreted as flow conservations conditions at each node t while
constraints (4) indicate that, in presence of flow on arc ð0; tÞ, this
value cannot exceed the capacity of this arc. In practice the
problem consists in defining the production inflows (xt) able to
satisfy the outflows (dt) with the minimum cost, also using
possible holdover flows accumulated in the previous periods
(st�1).

This representation can also be used by reversing flows xt and
dt as shown in Fig. 2. In this case, outflows (xt) have to be
determined in order to absorb the sum of the demand inflows
(dt) and of holdover flows from the previous period (st�1). Of
course, in this case, in the formulation, constraints (2) have to be
written reversing the signs of the variables xt and parameters dt ,
providing the following:

st ¼ st�1�xtþdt t ¼ 1; ::;N ð20Þ
In the case of a multi-item problem, introducing the index

j Af1::Mg representing one of the M items whose production has
to be planned, and considering each parameter and variable
indexed by bothj and t, the formulation of the multi-item DLSP,
also known as Capacitated Lot-Sizing Problem (CLSP) becomes

min z¼ ∑
N

t ¼ 1
∑
M

j ¼ 1
ðptjxtjþhtjstjþ f tjytjÞ ð6Þ

Nt+1t

0

21

Fig. 1. Representation of a DLSP as network flow problem.
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