Escalation of commitment in troubled IT projects: Influence of project risk factors and self-efficacy on the perception of risk and the commitment to a failing project

Arpan Jani*

College of Business and Economics, University of Wisconsin, River Falls, 410 South Third Street, River Falls, WI 54022, United States

Received 31 March 2010; received in revised form 30 July 2010; accepted 26 August 2010

Abstract

Past studies have indicated that project managers may be less likely to continue failing IT projects if they are able to perceive project risks accurately. Using the scenario of a failing IT project, a computer simulation-based experiment investigated the influence of individual self-efficacy and project risk factors on the perception of risk. Participants played the role of a project manager and managed a simulated IT project. The results suggest that project managers are likely to underestimate the risks of a project with endogenous risk factors as compared to a project with exogenous risk factors. Results of this study point to a 'self-efficacy bias' where project managers with higher self-efficacy may underestimate the risks of a troubled IT project as compared to project managers with lower self-efficacy. Further, risk perception mediated the influence of self-efficacy on the commitment to a failing IT project.

Keywords: Risk perception; Self-efficacy; Project risk management; IT projects; Escalation of commitment

1. Introduction

'Escalation of commitment' in IT projects is often a problem where project managers may continue to persist with failing projects (Keil, 1995; Keil and Mann, 1997). Many studies have investigated factors contributing to 'escalation of commitment' in IT projects (Keil et al., 2000a,b; Keil et al., 2003; Keil and Robey, 2001; Smith et al., 2001; Tan et al., 2003). Keil and colleagues (2000a,b) have suggested that project managers who accurately perceive the risks of a failing endeavor are less likely to continue with failing projects. Several researchers have identified inadequate risk management as a contributing factor for many software project failures (Barki et al., 1993; Boehm and Ross, 1989; Ropponen and Lytinen, 2000; Keil et al., 1998; Tiwana and Keil, 2004; Wallace et al., 2004; Kappelman et al., 2006; Tesch et al., 2007). However, few studies have paid attention to the risk evaluation processes in IT project management. Keil et al. (2000a) have proposed a comprehensive conceptual framework that considers the influence of personal, project, informational, and organizational factors on risk perception which in turn influences the willingness to continue a failing project. However, there is a need to investigate empirically the specific factors that may influence the risk perception of IT project managers. This study fills the gap in the current literature by investigating an individual-level and a project-level factor that may influence the risk perception of project managers.
2.1. Project risk factors, controllability of outcomes, and risk perception

Ropponen and Lyttinen (2000, p. 99) define software project risk as a “state or property of a development task or environment, which if ignored, can increase the likelihood of project failure”. Wallace et al. (2004) have identified six dimensions of project risks: organizational environment risk, user risk, requirements risk, project complexity risk, planning and control risk, and team risk. Tiwana and Keil (2004) identified six project risk drivers and classified these risk drivers on the basis of the sphere of influence project managers have over them. Using an international Delphi study, Keil et al. (1998) identified the risk factors deemed most important by project managers in the U.S., Finland, and Hong Kong. Keil et al. (1998) classified software risk factors as having two dimensions: perceived importance of the risk factors and perceived controllability over the risk factors. Keil et al. (1998) found that project managers deemed the risks that were often not under their direct control to be the most important risks.

Following the work by Keil and his co-authors (Keil et al., 1998, Tiwana and Keil, 2004) this study classifies project risk factors into two categories based on the degree of managerial control over the risk factors (Jani, 2008): endogenous and exogenous risk factors. Endogenous risk factors are variables or events that can influence the project outcomes negatively, such as project team morale, employee productivity, inadequate training, or inadequate project reviews (Jani, 2008). These are linked to a project’s internal factors and are typically under the direct control of a project manager. Exogenous risk factors are due to external events or factors that influence the project outcomes negatively such as environmental factors like governmental regulations, or change in business environment or change in project scope (Jani, 2008). These are often not under the direct control of a project manager. According to the classification used in this study, organizational environment risk and requirements risk identified by Wallace et al. (2004) could be considered exogenous risk factors. Project managers may have limited capacity to influence the organizational environment risk (e.g. factors like politics, organizational support for the project) and requirements risk (change in requirements). User risk, project complexity risk, planning and control risk and team risk identified by Wallace et al. (2004) could be considered endogenous risk factors because these factors are mostly internal to the project and project managers will have greater degree of control over these factors. Project managers can make sure that there is adequate user participation in the development process, reduce project complexity by using a modular design and by breaking down large projects into smaller projects, implement adequate processes and project management practices in place, and make sure that the team members are knowledgeable, have received adequate training and the communication and coordination problems are resolved.

Individual risk taking is influenced by risk perception (Sitkin and Pablo, 1992; Sitkin and Weingart, 1995). Sitkin and Pablo (1992, p.12) define risk perception as the “decision maker’s assessment of the risk inherent in a situation”. Risk perception has also been defined as the assessment of a situation in terms of probabilistic estimates of the degree of situational uncertainty, how controllable that uncertainty is, and confidence in those estimates (Sitkin and Weingart, 1995, p.1575). Controllability of potential outcomes is a key factor that determines an
دریافت فوری
متن کامل مقاله

امکان دانلود نسخه تمام متن مقالات انگلیسی
امکان دانلود نسخه ترجمه شده مقالات
پذیرش سفارش ترجمه تخصصی
امکان جستجو در آرشیو جامعی از صدها موضوع و هزاران مقاله
امکان دانلود رایگان ۲ صفحه اول هر مقاله
امکان پرداخت اینترنتی با کلیه کارت های عضو شتاب
دانلود فوری مقاله پس از پرداخت آنلاین
پشتیبانی کامل خرید با بهره مندی از سیستم هوشمند رهگیری سفارشات