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Abstract

The proprietary nature of Hedge Fund investing means that it is common practise for managers to release minimal

information about their returns. The construction of a fund of hedge funds portfolio requires a correlation matrix which

often has to be estimated using a relatively small sample of monthly returns data which induces noise. In this paper,

random matrix theory (RMT) is applied to a cross-correlation matrix C, constructed using hedge fund returns data. The

analysis reveals a number of eigenvalues that deviate from the spectrum suggested by RMT. The components of the

deviating eigenvectors are found to correspond to distinct groups of strategies that are applied by hedge fund managers.

The inverse participation ratio is used to quantify the number of components that participate in each eigenvector. Finally,

the correlation matrix is cleaned by separating the noisy part from the non-noisy part of C. This technique is found to

greatly reduce the difference between the predicted and realised risk of a portfolio, leading to an improved risk profile for a

fund of hedge funds.
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1. Introduction

A hedge fund is a lightly regulated private investment vehicle that may utilise a wide range of invest-
ment strategies and instruments. These funds may use short positions, derivatives, leverage and charge
incentive-based fees. Normally, they are structured as limited partnerships or offshore investment com-
panies. Hedge funds pursue positive returns in all markets and hence are described as ‘‘absolute return’’
strategies.

Hedge funds are utilised by pension funds, high net-worth individuals and institutions, due to their low
correlation to traditional long-only investment strategies. The incentive-based performance fees, earned by
hedge fund managers, align the interest of the hedge fund manager with that of the investor. The performance
of hedge funds has been impressive, with the various hedge fund indices providing higher returns, with lower
volatility, than traditional assets over many years. As of the end of the first quarter 2006 the total assets
managed by hedge funds world wide is estimated at $1.25 trillion [1]. Hedge funds generally only report their
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returns on a monthly basis and this means that there is a very limited amount of data available to study as
databases of hedge fund returns have only been in operation for about 15 years. This is in keeping with the
highly secretive, proprietary nature of hedge fund investing. The amount of information reported by a hedge
fund about how and where it is producing its returns is often limited to sectoral overviews and strategy
allocations. For an introduction to hedge funds see Refs. [2,3].

Significant diversification benefits can be gained by investing in a variety of hedge fund strategies,
due to the presence of low and even negative correlations between different hedge fund strategies.
Such strategies can be broken up into two general categories: directional and market neutral. Direc-
tional strategies, (for example long/short equity, emerging markets, macro and managed futures) have
a high risk, high return profile and act as return enhancers to a traditional portfolio. Market neutral strate-
gies, (for example convertible arbitrage, equity market neutral and fixed income arbitrage) deploy a
low risk profile and act as a substitute for some proportion of the fixed income holdings in an investors
portfolio [2,3].

A fund of hedge funds allows investors to have access to a large diverse portfolio of hedge funds without
having to carry out due diligence on each individual manager. The diversification benefits provided by fund of
funds are brought about by investing in a number of funds that have a low correlation to each other. These
correlations are often calculated by using equally weighted fund returns and can contain a significant amount
of noise due to the very small amount of returns data available for hedge funds [3].

In this paper we apply random matrix theory (RMT) to hedge fund returns data with the aim of reducing
the levels of noise in these correlation matrices formed from this data and hence constructing a fund of hedge
funds with an improved risk profile. Previous studies have used the information found in the RMT defined
deviating eigenvalues of a correlation matrix as inputs into a minimum spanning tree [4] to enable
characterisation of hedge fund strategies. In this paper, the components of the deviating eigenvectors are
shown to correspond to distinct groups of strategies that are applied by hedge fund managers and this is
exploited to construct a portfolio with reduced levels of risk.

This paper is organised as follows: in Section 2 we review RMT and discuss its use in the extraction
of information from a correlation matrix of hedge fund returns using RMT techniques. In Section 3,
we look at the results obtained applying RMT to hedge funds and, in the final section, we draw our
conclusions.

2. Methods

2.1. Random matrix theory

Given returns GiðtÞ, i ¼ 1; . . . ;N, of a collection of hedge funds we define a normalised return in order to
standardise the different fund volatilities. We normalise Gi with respect to its standard deviation si as follows:

giðtÞ ¼
GiðtÞ � dGiðtÞ

si

, (1)

where si is the standard deviation of Gi for assets i ¼ 1; . . . ;N andcGi is the time average of Gi over the period
studied.

Then the equal time cross-correlation matrix is expressed in terms of giðtÞ

Cij � hgiðtÞgjðtÞi. (2)

The elements of Cij are limited to the domain �1pCijp1, where Cij ¼ 1 defines perfect correlation between
funds, Cij ¼ �1 corresponds to perfect anti-correlation and Cij ¼ 0 corresponds to uncorrelated funds. In
matrix notation, the correlation matrix can be expressed as

C ¼
1

T
GGt, (3)

where G is an N � T matrix with elements git.
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