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a b s t r a c t

This paper introduces a heuristic approach to portfolio optimization problems in different risk measures
by employing genetic algorithm (GA) and compares its performance to mean–variance model in cardinal-
ity constrained efficient frontier. To achieve this objective, we collected three different risk measures
based upon mean–variance by Markowitz; semi-variance, mean absolute deviation and variance with
skewness. We show that these portfolio optimization problems can now be solved by genetic algorithm
if mean–variance, semi-variance, mean absolute deviation and variance with skewness are used as the
measures of risk. The robustness of our heuristic method is verified by three data sets collected from main
financial markets. The empirical results also show that the investors should include only one third of total
assets into the portfolio which outperforms than those contained more assets.

� 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Expect return and risk are the most important parameters with
regard to portfolio optimization problems. One of the main contri-
butions on this problem is by Markowitz (1952, 1991) who intro-
duced mean–variance model, but the standard mean–variance
model is based on assumption that investors are risk averse and
the return of assets are normally distributed. Jia and Dyer (1996)
noted that these conditions are rarely satisfied in practice. The
mean–variance objective function may not be the best choice
available to investors in terms of an appropriate risk measure. Fur-
thermore, other risk measures may be more appropriate. From a
practical point of view, real world investors have to face a lot of
constraints in risk models: trading limitation, size of portfolio,
etc. Such as constraints may be formed in a nonlinear mixed inte-
ger programming problem which is considerably more difficult to
solve than the original model. Several researchers have attempted
to find this problem by a variety of techniques, but exact solution
methods fail to solve large-scale instances of the problem. There-
fore, several researchers try to improve algorithms by using the
state-of-the-art mathematical programming methodology to solv-
ing portfolio problems. The purpose of this paper is to show that
portfolio optimization problems containing cardinality constrained
efficient frontier can be successfully solved by the state-of-the-art
genetic algorithms if we use the different risk measures such as
mean–variance, semi-variance, mean absolute deviation and vari-
ance with skewness. We also show that practical portfolio optimi-

zation problems consisting of different numbers of assets drawn
from three main markets stock indices can be solved by a genetic
algorithm within a practical amount of time.

The remainder of this paper is organized as follows. Section 2
describes the portfolio optimization in the risk measures which
we want to solve. In Section 3 investigates basic structure of genet-
ic algorithm. Section 4, our proposed algorithm was introduced.
Section 5 provides our computational results using C++ program-
ming. It shows that cardinality constrained portfolio optimization
problems can be solved in different risk measures without diffi-
culty. Conclusion is given in Section 6.

2. Portfolio optimization in the risk measures

Portfolio is to deal with the problem of how to allocate wealth
among several assets. The portfolio optimization problems have
been one of the important research fields in modern risk manage-
ment. In generally, an investor always prefers to have the return on
their portfolio as large as possible. At the same time, he also wants
to make the risk as small as possible. However, a high return al-
ways accompanied with a higher risk. Markowitz introduced the
mean–variance model, which has been regarded as a quadratic
programming problem. In spite of its popularity during the past,
the mean–variance model is based upon the assumptions that an
investor is risk averse and that either (i) the distribution of the rate
of return is multivariate normal or (ii) the utility of the investor is a
quadratic function of the rate of return. Unfortunately however,
neither (i) nor (ii) holds in practice. It is now widely recognized
that the real world portfolios do not follow a multivariate normal
distribution. Many researchers once suggest that cannot blindly
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depend on mean–variance model. Therefore, there has been a tre-
mendous amount of researches on improving this basic model both
computationally and theoretically. Various risk measures such as
semi-variance model, mean absolute deviation model and variance
with skewness model have been proposed. Among them risk mod-
els were mathematically shown as below.

2.1. Mean–variance model

Markowitz was the first to apply variance or standard deviation
as a measure of risk. He assumed that his classical formation is as
follows:

Minimize
XN

i¼1

XN

j¼1

wiwjrij ð1Þ

Subject to
XN

i¼1

wili ¼ R� ð2Þ

XN

i¼1

wi ¼ 1 ð3Þ

0 6 wi 6 1; i ¼ 1; . . . ;N ð4Þ

where

N is the number of assets available;
wi is the proportion (0 6wi 6 1) of the portfolio held in assets i
(i = 1, . . . ,N);
li is the expected return of asset i (i = 1, . . . ,N);
rij is the covariance between assets i and j (i = 1, . . . ,N;
j = 1, . . . ,N).

Eq. (1) minimizes the total variance (risk) associated with the
portfolio while Eq. (2) ensures that the portfolio has an expected
return of R*. Eq. (3) ensures that the proportions add to one. In
Eq. (4) the proportion held in each asset is between zero (minimum
amount) and one (maximum amount). This formulation (Eqs. (1)–
(4)) is a quadratic programming problem and nowadays it can be
solved optimally using available software tool.

By solving the above optimization problem continuously with a
different R* each time, a set of efficient points is traced out. This
efficient set called the efficient frontier and is a curve that lies be-
tween the global minimum risk portfolio and the maximum return
portfolio. In other words, the portfolio selection problem is to find
all the efficient portfolios along this frontier.

In order to enrich the model, we introduce a weighting param-
eter k (0 6 k 6 1) and consider:

Minimize k
XN

i¼1

XN

j¼1

wiwjrij

" #
� ð1� kÞ

XN

i¼1

wili

" #
ð5Þ

Subject to
XN

i¼1

wi ¼ 1 ð6Þ

XN

i¼1

zi ¼ K ð7Þ

eizi 6 wi 6 dizi; i ¼ 1; . . . ;N ð8Þ
zi 2 f0;1g; i ¼ 1; . . . ;N ð9Þ

where

K is the desired number of assets in the portfolio;
ei is the minimum proportion that must be held of asset i
(i = 1, . . . ,N) if any of assets i is held;
di is the maximum proportion that can be held of asset i
(i = 1, . . . ,N) if any of assets i is held;
zi = 1 if any of asset i (i = 1, . . . ,N) is held

= 0 otherwise.

Eq. (5) the case k = 0 represents maximum expected return and
k = 1 represents minimum risk. Values of k satisfying 0 < k < 1 repre-
sent an explicit trade-off between risk and return, generating solu-
tions between the two extremes k = 0 and k = 1. Eq. (6) ensures
that the proportions add to one. Eq. (7) is assets desired number con-
straint. It ensures that exactly K assets are held. Eq. (8) constraints
define lower and upper limits on the proportion of each asset which
can be held in the portfolio. It ensures that if any of assets i is held
(zi = 1) its proportion wi must lie between ei and di, while if none of
asset i is held (zi = 0) its proportion wi is zero. Eq. (9) is the integrality
constraint. By a weighting parameter k, we could use this program
(Eqs. (5)–(9)) to trace out the cardinality constrained efficient fron-
tier (CCEF) in an exactly analogous way. The use of heuristics for car-
dinality constrained portfolio optimization has been proposed and
discussed by Chang, Meade, Beasley, and Sharaiha (2000).

2.2. Semi-variance model

Standard mean–variance model is based upon assumptions that
an investor is risk averse and that the distribution of the rate of re-
turn is multivariate normal. This means that the variance compo-
nent of the Markowitz quadratic objective function can be
replaced by other risk functions such as semi-variance. With an
asymmetric return distribution, the mean–variance approach leads
to an unsatisfactory prediction of portfolio behavior. Markowitz in-
deed suggested that a model based on semi-variance would be
preferable. Let:

T be such that we have observed historical values for stocks
over the time period 0,1,2, . . . ,T;
vit be the value of one unit of stock i (i = 1, . . . ,N) at time t
(t = 0, . . . ,T);
Ccash be the cash available to invest in the portfolio;
xi be the number of units of stock i (i = 1, . . . ,N) that we choose
to hold in the portfolio;
zi = 1 if any of stock i (i = 1, . . . ,N) is held in the portfolio

= 0 otherwise.

It is helpful when formulating the problem to introduce:

wi is the proportion of Ccash that is invested at time T in stock i
(i = 1, . . . ,N);
rt is the single period continuous time return given by the port-
folio at time t (t = 1, . . . ,T).

We get the values through the variables given previously:

wi ¼ v iT xi=Ccash; i ¼ 1; . . . ;N ð10Þ

rt ¼ loge

XN

i¼1

v itxi

 ,XN

i¼1

v it�1xi

!
; t ¼ 1; . . . ; T ð11Þ

Eq. (10) defines wi to be the proportion of the portfolio associated
with stock i at time T and Eq. (11) defines rt to be the return on
the portfolio (since the total value of the portfolio at time t isPN

i¼1v itxi). Then the constraints associated with discrete time port-
folio optimization problem are

XN

i¼1

zi ¼ K ð12Þ

eizi 6 v iT xi=Ccash 6 dizi; i ¼ 1; . . . ;N ð13Þ
XN

i¼1

v iT xi ¼ Ccash ð14Þ

xi P 0; i ¼ 1; . . . ;N ð15Þ
zi 2 f0;1g; i ¼ 1; . . . ;N ð16Þ
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