Available online at www.sciencedirect.com

SCIENCE@DIREOT“ COMPUTATIONAL
STATISTICS
& DATA ANALYSIS

sl
ELSEVIER Computational Statistics & Data Analysis 48 (2005) 717734 _—
www.elsevier.com/locate/csda

An algorithm for computing exact least-trimmed
squares estimate of simple linear regression
with constraints

Lei M. Li*

Department of Computational Biology and Mathematics, University of Southern California,
CA 90089-1113, USA, 1042 West 36th Place, DRB 289, Los Angeles, CA 900891113, USA

Received 19 November 2003; received in revised form 2 April 2004; accepted 3 April 2004

Abstract

The least-trimmed squares estimation (LTS) is a robust solution for regression problems. On
the one hand, it can achieve any given breakdown value by setting a proper trimming fraction.
On the other hand, it has +/n-consistency and asymptotic normality under some conditions. In
addition, the LTS estimator is regression, scale, and affine equivariant. In practical regression
problems, we often need to impose constraints on slopes. In this paper, we describe a stable
algorithm to compute the exact LTS solution for simple linear regression with constraints on the
slope parameter. Without constraints, the overall complexity of the algorithm is O(n? logn) in
time and O(#®) in storage. According to our numerical tests, constraints can reduce computing
load substantially. In order to achieve stability, we design the algorithm in such a way that
we can take advantage of well-developed sorting algorithms and softwares. We illustrate the
algorithm by some examples.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Statisticians routinely apply regression analysis to fit models to observations. To
deal with outliers, we seek for robust and resistant regression procedures. Quite some
number of perspectives exist in the literature regarding the definition of robustness.
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For example, Huber (1964) studied robustness from the point of view of minimax
variance. Hampel (1971, 1974) proposed the idea of influence function as an asymptotic
tool to study robustness. Breakdown point is another important notion in robust analysis.
Donoho and Huber (1983) defined a finite-sample version of breakdown point. Consider
the classical linear model

y=XB+s (1)

where y=(y1,.... ), p=P1,....B,), e=C(e1,..., &), and X =(x;;)i=1,_n, j=1,.. p- FOr
a set of parameter fy, we define the residuals by r(fo) = y — XPo. The least-squares
estimator minimizes the sum of squares Z:.’:lrf(ﬂ) over . The breakdown value
of least-squares estimator is 1/n — 0 as n — oo. On the other hand, the highest
possible breakdown point is 50%. One solution that reaches this bound of break-
down point is the least median of squares (LMS) estimator, cf. Rousseeuw (1984),
which minimizes the median of squared residuals: ming [med; r*(B)i]. Unfortunately,
the asymptotic efficiency of LMS is unsatisfactory because its convergence rate is
only of the order n~!/3. Another robust solution is the least-trimmed squares (LTS)
estimator, which takes as its objective function the sum of smallest squared residu-
als; see Rousseeuw (1984). We denote the squared residuals in the ascending order
by [2(B)|ay < [P (B)l2) < -+ < |r*(B)|n). Then the LTS estimate of coverage 4 is
obtained by

h
mﬁinz (B -
i=1

This definition implies that observations with the largest residuals will not affect the
estimate. The LTS estimator is regression, scale, and affine equivariant; see Rousseeuw
and Leroy (1987, Lemma 3, Chapter 3). In terms of robustness, we can roughly
achieve a breakdown point of p by setting & =[n(1 — p)] + 1. In terms of efficiency,
\/n-consistency and asymptotic normality similar to M-estimator exist for LTS under
some conditions; see Visek (1996, 2000) for example. Despite its good properties, the
computation of LTS remains a problem.

The problem of computing the LTS estimate of f is equivalent to searching for the
size-h subset(s) whose least-squares solution achieves the minimum of trimmed squares.
The total number of size-4 subsets in a sample of size n is (Z) A full search through
all size-h subsets is impossible unless the sample size is small. Several ideas have
been proposed to compute approximate solutions. First, instead of exhaustive search
we can randomly sample size-/ subsets. Second, Rousseeuw and Van Driessen (1999)
proposed a so-called C-step technique (C stands for “concentration”). That is, having
selected a size-h subset, we apply the least-squares estimator to them. Next, for the
estimated regression coefficients, we evaluate residuals for all observations. Then a new
size-h subset with the smallest squared residuals is selected. This step can be iterated
starting from any subset. In the case of estimating a location parameter, Rousseeuw and
Leroy (1987, pp. 171-172), described a procedure to compute the exact LTS solution.
Rousseeuw and Van Driessen (1999) applied this idea to adjust the intercept in the
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