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a b s t r a c t

This paper develops a continuous-time Markov model for utility optimization of households. The
household optimizes expected future utility from consumption by controlling consumption, investments
and purchase of life insurance for each person in the household. The optimal controls are investigated in
the special case of a two-person household, andwe present graphics illustrating how differences between
the two persons affect the controls.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Original consumption-investment problems are formulated in
terms of optimizing utility of consumption and a terminal utility
over a fixed time horizon for a single person; see Merton (1969,
1971). Richard (1975) included the problem of finding an optimal
life insurance strategy, and formulated the problem of optimizing
expectedutility over anuncertain life time,where utility nowarose
from consumption and from leaving a positive amount of money
upon death. Apart from introducing life insurance, Richard (1975)
also modeled a continuous life time income, and found that the
expected life time income had a positive effect on the demand for
life insurance. Actually, the inclusion of an insurance decision in
the personal finance optimization problemwas first formulated in
a discrete-time setting by Yaari (1965).

Since the path-breaking article of Hoem (1969), the continuous-
time finite state Markov chain has played a prominent role in
the theory of life insurance, and (Kraft and Steffensen, 2008)
applied the continuous-time finite state Markov chain to the
ideas established by Richard (1975). Kraft and Steffensen (2008)
motivated the set-up by a personal finance model which allowed
the customer to insure himself against disability, unemployment
and similar personal risks.
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Inspired by Kraft and Steffensen (2008) we use the Markov
chain set-up for modeling household finance in the sense of op-
timizing expected future utility for a household consisting of eco-
nomically and probabilistically dependent persons. The modeling
is flexible enough to capture several interesting differences be-
tween the members of the household, and leads to closed form so-
lutions for the optimal controls of investments, consumption of the
household and purchase of life insurance for each of its members.

The paper is organized as follows. In Section 2, we present the
general Markovmodel including the dynamics of the wealth of the
household. Furthermore, we describe the assumptions concerning
utility, and the general optimal value function for the problem.
Section 3 presents the problem and the solution in the case of
a one-person household, thereby setting the foundation for the
multiple-person models. In Section 4, we solve the problem for
a two-person household. We comment on the optimal control
processes regarding consumption, investment and life insurance
purchase, and in Section 5, we show numerical examples of these
based on expectations to the investment market. In Section 6, we
explain the mathematical induction techniques used for solving
the multiple-person problem and write up the optimal controls
in this case. Finally, in Section 7, we present ideas for further
development of the model.

2. The general optimization problem

We let the state of the household be represented by a finite state
multi-dimensional Markov chain, Z , and the state of the economy
be represented by a standard BrownianmotionW . These processes

0167-6687/$ – see front matter© 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.insmatheco.2010.12.004

http://dx.doi.org/10.1016/j.insmatheco.2010.12.004
http://www.elsevier.com/locate/ime
http://www.elsevier.com/locate/ime
mailto:bruhn@math.ku.dk
mailto:kbx@sebpension.dk
mailto:mogens@math.ku.dk
http://dx.doi.org/10.1016/j.insmatheco.2010.12.004


316 K. Bruhn, M. Steffensen / Insurance: Mathematics and Economics 48 (2011) 315–325

are assumed to be independent and defined on the measurable
space (Ω,F ), where F is the natural filtration of (Z,W ).

We let P and P∗ be equivalent probability measures on the
measurable space (Ω,F ) and refer to P as the objective measure
and P∗ as the pricing measure, used for pricing both market risk
(W ) and life insurance risk (Z) by the insurance company. We
hereby take the modern approach and consider life insurance
policies as standard tradable financial contracts, as is done in e.g.
Richard (1975) and Kraft and Steffensen (2008). Illiquidity issues
could be dealt with on top of that, e.g. by introducing an illiquidity
risk premium, but this is beyond the scope of this article.

It is essential for our studies below that the pricing measure
exists such that pricing is unique and linear. Whereas this is con-
ventional for e.g. equity risk, the assumption is a less conventional
restriction for insurance risk. The pricing measure with respect to
insurance risk may be equal to the objective measure with refer-
ence to diversification. Our results are not restricted to that case of
zero market price on insurance risk but, as it can be seen below,
the results become particularly simple in that case.

When modeling a household consisting of n persons, the state
process Z takes values in {0, 1}n, and by convention it starts in
{0, 0, . . . , 0} at time 0. The n marginal processes of Z indicate, for
each person, whether or not that person is dead, and thereby Z is
given by

(Zt)t≥0 =

Z1
t , Z

2
t , . . . , Z

n
t


t≥0 ,

where Zk
= (Zk

t )t≥0 counts the number of deaths for person k, k ∈

{1, 2, . . . , n}.
The state process Z has jump intensities, µ̂ij under P and µ̂∗ij

under P∗, and we denote the set of states to which Z can jump at
time t byZt . As we do not allow formultiple deaths in a small time
interval or for resurrection, the number of states in Zt equals the
number of persons being alive at time t .

For any given i = (i1, i2, . . . , in) and j = (j1, j2, . . . , jn), we
write the transition rate functions

µ̂
ij
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for some deterministic continuous transition rate functionsµij
t and

µ
∗ij
t . These functions are non-null only for i and j such that the

transition i → j is possible, i.e. ik = 0 and jk = 1 for exactly one
k and il = jl for l ≠ k. In order to have well-defined problems we
assume that µij

t → ∞ and µ∗ij
t → ∞ for those pairs of states (i, j)

for which the transition i → j is possible. That implies in particular
that

lim
t→∞

P(Zt = {1, 1, . . . , 1}) = lim
t→∞

P∗(Zt = {1, 1, . . . , 1}) = 1.

The compensated jumping process is a martingale under the
respective measures, meaning that M = Z −


µ̂ is a martingale

under P andM∗
= Z −


µ̂∗ is a martingale under P∗. In particular,

we will use the marginal processes, and for j ∈ Zt write

dM∗Zt j
t = dZψ(Zt ,j)t − µ

∗Zt j
t dt

for the dynamics at time t of the marginal martingale given Zt ,
where ψ(i, j) gives the coordinate of Z that changes from 0 to 1
upon a jump of Z from state i to state j. Note that µ̂∗Zt j = µ∗Zt j

since j ∈ Zt .

Wealth dynamics

The household decides on an optimal allocation of wealth in
a risky asset and a risk-free asset at all times. The household has

access to an investmentmarket consisting of a bond (B) and a stock
(S) with Black–Scholes dynamics

dBt = rBtdt,
B0 = b0 > 0,
dSt = αStdt + σ StdWt ,

S0 = s0 > 0,

where r, α and σ are constants and W is a standard Brownian
motion. The proportion of household wealth invested in the stock
is described by the process π . This simple investment market
model is chosen since the focus here is on the life insurance
decisions, but the results can be generalized to more advanced
investment market models.

Allowing the household to purchase life insurance for each
person at all times, the household wealth, X , follows the dynamics

dXt = (r + πt(α − r))Xtdt + πtσXtdWt

+ aZtt dt − ctdt +

−
j∈Zt−

S jtdM
∗Zt−j
t ,

X0 = x0,

where aj is the deterministic income process corresponding to
state j, j ∈ {0, 1}n, and c is the total consumption process of the
household. The processes S j are the sums insured such that S j is
the amount paid out upon a jump of Z from state Zt− to state j, and
µ

∗Zt−j
t S jt is the natural premium intensity that the household pays

at time t for that life insurance. The linearity of the premium as a
function of the sum insured is a consequence of assuming existence
of a pricing measure. This linearity is essential for our studies and
the application of our results below is restricted to that situation.
The special case of zero market price of insurance risk corresponds
to settingµ∗

= µ and represents a relevant andparticularly simple
special case.

In practical, building of reserves in insurance companies is
needed for trading life annuities. That could be dealt with by
formulating our optimization problem with two types of wealth,
personal wealth and institutional wealth, as it is done by Kraft
and Steffensen (2008). However, they find that if we impose no
constraints on these wealth processes and allow utility to depend
only on the sum of them, then we need not model two separate
wealth processes (the optimization problem with two wealth
processes results in the same optimal controls as the problemwith
only one). Since we allow for utility of consumption only, in our
case it is sufficient to model one wealth process of the household.

A life annuitant leaves his institutional wealth to the insurance
company upon death. When we do not distinguish between
personal and institutional wealth, this is just seen as a sum paid
out of the wealth of the individual to the insurance company.
Therefore, we speak of a negative sum insured as a life annuity
payment. Thus, not restricting the sum insured to be positive is
essentially equivalent to allowing for purchase of life annuities.

The optimization problem

We consider the problem of maximizing expected utility
for the household, where the utility is assumed to come from
consumption only. In particular, we assume that there is no utility
from leaving a positive amount of money at the time when the
last person in the household dies (as is done by e.g. Richard (1975)
and Kraft and Steffensen (2008)). Writing uj(t, c) for the utility of
consuming c at time t , given that Zt = j, the optimization problem
is

sup
q∈Q[0,∞)

E0,x,0

∫
∞

0

−
j∈{0,1}n

1{Zs=j}uj(s, cs)ds


,



https://isiarticles.com/article/24323

