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a b s t r a c t

This paper derives the asymptotic distribution of the F-test for the significance of linear regression
coefficients as both the number of regressors, k, and the number of observations, n, increase together so
that their ratio remains positive in the limit. The conventional critical values for this test statistic are too
small, and the standard version of the F-test is invalid under this asymptotic theory. This paper provides
a correction to the F statistic that gives correctly-sized tests both under this paper’s limit theory and
also under conventional asymptotic theory that keeps k finite. This paper also presents simulations that
indicate the new statistic can perform better in small samples than the conventional test. The statistic
is then used to reexamine Olivei and Tenreyro’s results from [Olivei, G., Tenreyro, S., 2007. The timing
of monetary policy shocks. The American Economic Review 97, 636–663] and Sala-i-Martin’s results
from [Sala-i-Martin, X.X., 1997. I just ran two million regressions. The American Economic Review 87
(2), 178–183].
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1. Introduction

Consider the linear regression model
yt = x′

tβ + εt t = 1, . . . , n
with xt and εt uncorrelated. Under standard assumptions, the
OLS estimator, β̂ , is consistent and asymptotically normal as n
increases to infinity. This asymptotic distribution is the basis
for most of the empirical research in economics, but as Huber
(1973) has shown, it is unreliable unless k/n is close to zero; k
is the number of regressors in the model. Huber proves that the
OLS coefficient estimator is consistent and asymptotically normal
when k increases with n, but only if k/n → 0. In practice, k/n will
always be positive and is sometimes large, so it is unclear whether
the classic tests that exploit asymptotic normality are themselves
reliable. This paper derives the asymptotic distribution of the
F-test for arbitrary linear hypotheses about these coefficients
under a more general limit theory that allows k/n to remain
uniformly positive. The conventional F-test is asymptotically
invalid under this limit theory, but despite this theoretical
tendency to over-reject, will usually have close to its nominal size
in practice.1 Moreover, this paper derives a modification of the
F-test that is asymptotically valid and demonstrates that this new
test performs better than the unmodified F-test in practice.
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1 The F-test only performswell when using its finite-sample critical values. Tests
based on the chi squared limit of the F statistic do not perform well in practice and
should be avoided where possible.

This paper is not the first to study the asymptotic distribution
of estimators like β̂ as both n and k increase. Previous research
has looked at the behavior of M-estimators as k increases, the
behavior of Analysis of Variance (ANOVA) as the number of groups
increases, and the behavior of instrumental variable estimators as
the number of instruments increases. This research has followed
two distinct paths. The first looks for the fastest growth rate of
k that is compatible with standard consistency and asymptotic
normality results; k = o(n) is necessary for these results to hold
but is often insufficient. The second approach looks for alternative
asymptotic distributions of the coefficient estimators keeping k/n
positive.

These increasing-k asymptotics were first introduced in the
context of M-estimation; Huber (1973) argues that assuming k
is fixed is unrealistic in practice. After proving that k = o(n) is
necessary for theOLS estimator to be consistent and asymptotically
normal, Huber argues that this condition is likely to be needed
by any tractable asymptotic theory and proves normality of the
M-estimator of the coefficients of the linear regression model
under the stronger condition that k3/n → 0. This rate was
improved by Yohai and Maronna (1979) and Portnoy (1984, 1985)
to k log k/n → 0 for consistency and (k log k)1.5/n → 0 for
asymptotic normality. Further research has extended these results
to other estimating functions (Welsh, 1989), nonlinear models (He
and Shao, 2000), and estimation of the distribution of the errors
(Chen and Lockhart, 2001; Mammen, 1996; Portnoy, 1986).

In econometrics, interest has focused instead on the properties
of IV estimators with a fixed number of coefficients but an increas-
ing number of instruments, l. Bekker (1994), building on earlier re-
sults by Anderson (1976), Kunitomo (1980), andMorimune (1983),
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studies the asymptotic behavior of Two-Stage Least Squares (2SLS)
and variations of Limited InformationMaximum Likelihood (LIML)
in models with normal errors as l/n converges to a positive con-
stant. These authors find that LIML is both consistent and asymp-
totically normal but that 2SLS is not. These results are extended
to non-Gaussian errors by Hansen et al. (2008), Chao et al. (2008),
and others. Koenker and Machado (1999) prove the consistency
and asymptotic normality of GMM estimators with l3/n → 0.
Stock and Yogo (2005), Chao and Swanson (2005), and Andrews
and Stock (2007), among others, combine the many-instruments
and the weak instrument literature and argue that the relation-
ship between the concentration parameter and l is more impor-
tant than that between the number of observations and l. Anderson
et al. (2010) establish some optimality properties for LIML in this
setting. Han and Phillips (2006) study the limiting distributions of
nonlinear GMMestimatorswithmanyweak instruments, and their
approach allows for the estimators to converge to non-normal
distributions.

Previous work on the F-test under increasing-k asymptotics
has focused largely on ANOVA. Boos and Brownie (1995) find that
the usual F-test is asymptotically invalid unless the design matrix
is perfectly balanced (requiring an equal number of observations
for each group) and propose a new Gaussian approximation for
the statistic that gives an asymptotically valid test. This result
is extended to two-way fixed-effects and mixed models (Akritas
and Arnold, 2000), to allow for heteroskedasticity (Akritas and
Papadatos, 2004; Bathke, 2004; Wang and Akritas, 2006), and to
allow for additional covariates (Orme and Yamagata, 2006, 2007).
See, for example, Fujikoshi et al. (2010) for many asymptotic
results related to this literature. Anatolyev (forthcoming) studies
the asymptotic performance of the Likelihood Ratio, LM , and
F-tests under these asymptotics, imposing a different condition
on the regressor matrix that rules out the unbalanced ANOVA
applications just mentioned. Anatolyev shows that these three
statistics behave differently; the LM and LR tests require a
correction, but the F-test does not. We focus on the F-test alone
in this paper, and find, consistent with the ANOVA literature, that
it too requires a correction when the regressor matrix does not
satisfy Anatolyev’s conditions.

This research suggests that the standard test should behave
poorly in finite samples unless the number of predictors is quite
small. However, the F-test is known to have extremely good
performance as a comparison of means, even when the errors
are not normal. Scheffé (1959), for example, presents analytic
and computational evidence that supports using the F-test even
with asymmetric and fat tailed errors. Moreover, the simulations
presented in some of the ANOVA papers themselves support
using the naive F statistic instead of their proposed replacements.
Akritas and Papadatos (2004), for example, simulate a 5% test with
lognormal errors and find that the conventional F-test has size
0.04, while their proposed statistics have size 0.74 and 0.60, a
moderate over-rejection.

These corrections have other undesirable features. The approx-
imations do not hold under conventional, fixed-k asymptotics,
forcing applied researchers to choose between two incompatible
asymptotic approximations. Since k/n is always positive in prac-
tice, it is logical to use increasing-k limit theory by default, but the
simulation evidence indicates that it performs poorly. Moreover,
existing results only apply under strong restrictions on the matrix
of regressors – assuming either an ANOVA structure or other in-
hibitive conditions – and so are not relevant for applied economic
research.

This paper instead proposes a simple correction to the usual
F statistic that gives a valid test under either conventional fixed-
k or increasing-k asymptotics. When k is fixed, the correction
disappears in the limit and our proposed statistic is asymptotically

equivalent to the F-test.When k/n remains positive, the correction
does not vanish and improves the size of the test statistic. The
simulations presented in this paper indicate that this new statistic
performs better than the conventional F-test and also outperforms
a Gaussian test that is similar to those proposed in the ANOVA
literature.

Since this statistic nests both the standard and nonstandard
asymptotics, careful study of the correction can explain the
F-test’s strong performance in simulations. The magnitude of the
correction depends on the excess kurtosis of the regression errors,
εt , and on a particular feature of the design matrix of regressors.
When the excess kurtosis is zero, no correction is necessary
and the F-test is valid. If the excess kurtosis is not zero, the
magnitude of the correction depends on the diagonal elements of
the projection matrices for the unrestricted and restricted models
— the restricted model is the model estimated under the null
hypothesis. In practice, it is likely that the correction will be quite
small and the naive F-test will perform reassuringly well, even if it
is invalid.When the F statistic returns a value near the critical value
for a specific test size, though, the correction can affectwhether the
test rejects or fails to reject the null hypothesis.

Finally, the use of this statistic is demonstrated through two
applications — one for time series macroeconomic data and one
for cross-sectional data. The first reexamines Olivei and Tenreyro’s
(2007) study, ‘‘The Timing of Monetary Policy Shocks,’’ and finds
further support for their conclusion that the effect of monetary
policy on output has seasonal variation. The second reexamines
Sala-i-Martin’s (1997) cross-country economic growth analysis
and finds supporting evidence that additional variables beyond
primary school education, GDP per capita, and life expectancy are
correlatedwith a country’s economic growth. These variableswere
singled out by Levine and Renelt (1992) and Sala-i-Martin (1997)
as widely supported determinants of economic growth. The first
example uses 144 observations to test 51 restrictions; the setup is
a VAR with four equations and there are 51 restrictions on each
of these equations. The second example uses 88 observations and
tests 64 restrictions.

To reiterate, this paper derives a new statistic that can replace
the F statistic in tests and works well for regression models with
many regressors. The paper also explains the original F-test’s
strong performance in simulations and illustrates where it is likely
to do poorly in applications. Section 2 discusses the new test
statistic and studies its asymptotic distributions under the null and
alternative hypotheses. Section 3 presents Monte Carlo evidence
in favor of the statistic. Section 4 presents the empirical exercises.
Section 5 concludes. The proofs are presented in the Appendix.

2. Asymptotic theory and main results

This section derives the asymptotic distribution of the F-test of
the null hypothesis Rβ = r for the linear equation

yt = x′

tβ + εt

as q → ∞, n → ∞ and q/n remains uniformly positive; q is the
number of restrictions imposed by the null hypothesis. This limit-
ing distribution implies that the F-test is not valid, and we present
a new statistic, Ĝ, that should be used instead of the F statistic.
Comparing Ĝ to the quantiles from the F(q, n − k) distribution
yields an asymptotically valid test. Section 2.1 discusses the paper’s
notation and assumptions, Section 2.2 presents asymptotic theory
and the new test statistic, and Section 2.3 studies the differences
between the uncorrected and corrected statistics in more detail.
Since the number of estimated coefficients is assumed to varywith
n, a triangular array structure underlies all of this paper’s theory.
Unless otherwise indicated, all limits are taken as n → ∞.
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