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a b s t r a c t

In this study, we introduce an estimation approach to determine the parameters of the fuzzy linear
regression model. The analytical solution to estimate the values of the parameters has been studied.
The issue of negative spreads of fuzzy linear regression makes the problem to be NP complete. To deal
with this problem, an iterative refinement of the model parameters based on the gradient decent optimi-
zation has been introduced.

In the proposed approach, we use a hierarchical structure which is composed of dynamically accumu-
lated simple nodes based on Polynomial Neural Networks the structure of which is very flexible.

In this study, we proposed a new methodology of fuzzy linear regression based on the design method of
Polynomial Neural Networks. Polynomial Neural Networks divide the complicated analytical approach to
estimate the parameters of fuzzy linear regression into several simple analytic approaches.

The fuzzy linear regression is implemented by Polynomial Neural Networks with fuzzy numbers which
are formed by exploiting clustering and Particle Swarm Optimization. It is shown that the design strategy
produces a model exhibiting sound performance.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

In recent years, the problem of modeling and prediction from
observed data has been one of the most commonly encountered
research topics in machine learning and data analysis (Guvenir &
Uysal, 2000).

A simple way to describe a system is the regression analysis (Yu
& Lee, 2010). In the classical regression both independent and
dependent variables are treated as real numbers. However, in many
real-world situations, where the complexity of the physical system
calls for the development of a more general viewpoint, regression
variables are specified in the form of some non-numeric (granular)
entities such as e.g., linguistic variables (Cheng & Lee, 2001). The
well-known and commonly encountered classical regression can-
not handle such situations (Bardossy, 1990; Bardossy, Bogardi, &
Duckstein, 1990).

The fuzzy regression, which can deal with the non-numerical
entities, especially linguistic variables, was proposed by Imoto,
Yabuuchi, and Watada (2008), Tanaka, Uejima, and Asai (1982),
Toyoura, Watada, Khalid, and Yusof (2004), and Watada (2001). A
fuzzy linear regression proposed by Tanaka is composed of the
numeric input variables and the linguistic (granular) coefficients

which are treated as some fuzzy numbers (in particular, those
are described by triangular membership functions). The linguistic
coefficients of the regression lead to the linguistic output of the
regression model. In other words, the output of a fuzzy linear
regression model becomes also a triangular fuzzy number.

In essence, the fuzziness of the output of the regression model
emerged because of the lack of perfect fit of numeric data to the as-
sumed linear format of the relationship under consideration. In
other words, through the introduction of triangular numbers
(parameters of the model), this fuzzy regression reflects the devia-
tions between the data and the linear model. Computationally, the
estimation of the fuzzy parameters of the regression is concerned
with some problems of linear programming (Bargiela, Pedrycz, &
Nakashima, 2007).

Diamond developed a simple regression model for triangular
fuzzy numbers under the conceptual framework as

FðRmÞ ! FðRÞ ð1Þ

where F(R) denotes a family of fuzzy numbers (in our case triangu-
lar ones) defined in the space of real numbers R.

For the conceptual framework formed by (1), the various analyt-
ical formulae quantifying the values of the parameters of the regres-
sion model had to address the issue of negative spreads (Diamond &
Koerner, 1997), which complicates significantly the algorithms and
makes them difficult to apply to highly-dimensional data.
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Considering the optimization standpoint, A. Bargiela et al.
(2007) revised the mapping between the independent variables
and the dependent variable to be expressed as follows

FðRÞ � FðRÞ � � � � � FðRÞ ! FðRÞ ð2Þ

In addition, to deal with the issue of negative spreads, A. Bargi-
ela proposed a certain re-formulation of the regression problem as
a gradient-descent optimization task, which enables a generic

generalization of the simple regression model to multiple regres-
sion models in a computationally feasible way (Toyoura et al.,
2004).

The iterative refinement based on the gradient decent approach
to estimate the parameter of fuzzy linear regression is the modifi-
cation of the conventional gradient decent optimization. The draw-
back of the gradient decent optimization is well-known: the
optimization performance of the gradient decent optimization

Fig. 1. An overall structure of the Polynomial Neural Network with fuzzy data.

Fig. 2. An overall structure of the PNN.
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