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We know very little about the performance of point optimal (PO) and approximate point optimal (APO) tests in
the presence of unavoidable nuisance parameters. Because marginal likelihood based tests are said to perform
well in the presence of unavoidable nuisance parameters, this paper compares the performance of marginal like-
lihood based APO tests and classical tests using a testing problem which has been largely overlooked by econo-
metric practitioners, namely testing for a static linear regression model with AR(1) errors against a dynamic
linear regressionmodel with white noise errors. It is well known that the classical tests are specifically designed
for nested testing, they are applied to test for the significance of the dynamic coefficient of a dynamic linear
regression model with AR(1) errors.
A testing procedure is proposed, where the size and power comparisons used are based on near-exact non-
similar critical values of tests obtained using the simulated annealing (SA) algorithm, as the near-exact
non-similar critical values control the sizes of the tests well overall.
Among marginal likelihood based classical tests, the likelihood ratio (LR) test and Lagrange multiplier (LM) test
seem to performwell under the alternative hypothesis, particularlywhen the dynamic parameter is large and the
sample size is reasonably big. The Wald (W) test is the worst performer overall. This concurs with previous
observations that the W test performs poorly in small samples. Compared to the classical approach, APO tests
appear to have good power properties, particularly in the neighborhood of the chosen parameter point under
the alternative hypothesis. This finding may advance the use of PO and APO tests.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

In the context of a linear regression model, researchers have often
tried to correct for autocorrelation by including a first-order
autoregressive (AR(1)) or first-order moving average (MA(1)) error
term, when the Durbin andWatson (1950, 1951) (DW) statistic for auto-
correlation is significant. They have then estimated the model with ei-
ther generalized least squares (GLS) or the maximum likelihood (ML)
method. However, a number of researchers have warned that if the
true model is dynamic, a substantial bias in estimation can occur, and
vice-versa (De Boef and Keele, 2008; Keele and Kelly, 2006; McGuirk
and Spanos, 2002).

As McGuirk and Spanos (2002) and Spanos (1998, 1999) point out,
rejecting the null hypothesis in a misspecification test such as the DW
test does not indicate that the alternative model is true; only that the
original model may be misspecified. That is, in a linear regression

model context, a significant DW test indicates that the data possess
some kind of dependence. The type of dependence present in the data
can be captured with several alternative statistical models which
allow for such dependence. One such alternative is the dynamic linear
regression model. An advantage of this model is that it (almost) nests
the autocorrelation corrected linear model (McGuirk and Spanos,
2002). King and Rankin (1993) find that when the DW test in a linear
model is significant, and the true model is the dynamic linear model
with a large autoregressive parameter, a substantial loss in accuracy of
prediction can occur, if one proceeds to correct for AR(1) disturbances
without checking for the possibility of a dynamic linear model with
white noise errors. In particular they show that when the true model
is the dynamic linear model, correcting for serial correlation (or
vice-versa) can result in substantially biased estimates. Similar findings
are reported byKeele andKelly (2006) andMcGuirk and Spanos (2002).

The AR(1)model versus first-order dynamic linearmodel arewidely
used in political science (Beck and Katz, 2009; Kono, 2006). The dynam-
ic model is often used in this discipline to remove autocorrelation
(Blaydes, 2011) and is often considered theoretically more appropriate
because past behavior/performance is believed to influence current
political decision making. Arbitrarily using the dynamic linear model
when the true model is AR(1) (or vice-versa) may produce biased
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estimates, particularly in finite samples. While not used as extensively
in econometrics, a number of researchers have indicated that there
are different ways to model the data when significant autocorrelation
is detected (Heaney and Sriananthakumar, 2012; Jones, 1993a,b;
Sriananthakumar and King, 2006). Jones (1993a,b)1 uses US fuel con-
sumption and passenger vehicle use data to conduct a detailed study
involving several possible models to illustrate this point. His models
include those considered here.2 Jones (1993a) stresses the importance
of selecting amodel which is consistent with the data and recommends
the general-to-simple modeling approach of Hendry (1979) to achieve
this. He also warns that parameter estimates from data-rejectable
models may give very misleading indications of the dynamic nature
of the behavioral relationships being modeled. Jones observes that
researchers often tend to use some familiar specification they have
been trained to use, or find easy to implement, and some might appeal
to other researchers' success with a popular specification. Sadly this
trend continues even now. Jones (1993a) insists that untested accep-
tance of a popular model specification may lead to erroneous infer-
ences. For example, in his study, a popular dynamic specification
results in reasonable and significant estimates. However, close scrutiny
reveals that the model is not data-acceptable because it either over-
estimated or under-estimated important economic parameters, such
as the long run price elasticity and the speed of the adjustment process.

Jones (1993b) double-checked Greene's (1992) selection of model
for the US passenger vehicle use data using different modeling strat-
egies. Thismotivates one to question an outcome (even if it is suggested
by a well-known researcher) rather than accepting it at face value.
However, finding a data acceptable model is not that simple. It is
worth noting that if the true model which generated the given sample
is linear with AR(1) errors, and one fits the dynamic linear model
with white noise errors to the sample by the ordinary least squares
(OLS) method, then it is likely to explain the data rather well (Giles,
1975; Griliches, 1967). Therefore usual significance testing and a good-
ness of fit measure are not going to be helpful in this context. Because
correct model specification is important for forecasting, and also for
the purpose of further inference, it is desirable to have a powerful
testing procedure to distinguish between plausible alternative models.

For this type of problem nuisance parameters cannot be avoided. This
may make the test non-similar in the sense that the test's size3 varies
with the value of these nuisance parameters. Different approaches
when testing in the presence of nuisance parameters are suggested in
the literature. The classical approach to non-similar tests is to find exact
non-similar critical values, for which sizes are never greater than the
nominal significance level for all possible values of the nuisance parame-
ters. Such critical values are typically obtained using the Monte Carlo
method (Inder, 1986; King and McAleer, 1987; Silvapulle, 1991). Other
popular approaches include using bounds type tests and confidence in-
tervals, as suggested in Dufour (1990) and Pesaran et al. (2001), and re-
placing unknown nuisance parameters with consistent estimates and
then relying on asymptotic theory (Moreira, 2009). However, exact
bounds tests can be less powerful than non-similar tests. Forchini
(2005) shows that any test, with size bounded from above by a known
constant, has potentially very low power and a large type II error.

Kiviet and Dufour (2003) and Dufour (2006) suggest a maximized
Monte Carlo (MMC) test that maximizes a simulated p value over the
nuisance parameter space using SA. Dufour (2006) also suggests (and
proves) asymptotically valid MMC (AMMC) tests that use consistent
set estimators of nuisance parameters.4 The maximum p value of an

AMMC test can be obtained by maximizing the p value over a subset of
the nuisance parameter space (for example a confidence set of the nui-
sance parameters) instead of the entire nuisance parameter space.5

Thus, compared to the MMC approach, the AMMC approach will be
less time-consuming (Phipps and Byron, 2007). Although the MMC
approach is gaining popularity (Beaulieu, Dufour and Khalaf, in press;
Dufour and Tarek, 2006; Dufour and Valéry, 2009; Frederic and Olivier,
2006; Thomas et al., 2007), it is criticized for the following reasons: (1)
it can be computationally demanding, (2) MMC-based actual rejection
frequency may be very much less than the level of the test and may in
consequence be severely lacking power and (3) there is a possibility of
getting a much larger p value for nuisance parameter values far away
from the ones that actually generated the data (MacKinnon, 2009).

This paper adopts the classical approach. In particular, near-exact
non-similar critical value-based size and power properties are ana-
lyzed, because obtaining exact non-similar critical values involves a
large amount of computation (Inder, 1986).

Studies, such as those of TunnicliffeWilson (1989), Rahman andKing
(1997) and Francke and de Vos (2007), indicate that in the presence of
nuisance parameters marginal likelihood-based tests perform better
than conventional likelihood-based tests in finite samples. On the other
hand, if the null hypothesis and alternative hypothesis spaces are tightly
restricted, King's (1987) PO tests can be most powerful at a chosen pa-
rameter point under the alternative hypothesis.

However, PO tests cannot always be constructed when testing a
composite null hypothesis. Sriananthakumar and King (2006) propose
an APO test, called the g test, for this instance. The performance of PO
and APO tests in the presence of unavoidable nuisance parameters is
largely unknown. Theoretically, PO tests can be expected to be most
powerful in the absence of nuisance parameters. If PO tests are found
to work well in the presence of unavoidable nuisance parameters, this
will advance their use in practice.

The main contributions of this paper are the study of the finite sam-
ple performance of the APO test andmarginal likelihood-based classical
tests in the presence of unavoidable nuisance parameters; the construc-
tion of tests of an interesting, but largely overlooked, issue: testing for a
static linear regressionmodelwith AR(1) errors against a dynamic linear
regression model with white noise errors6; the comparison of different
information measures in the context of marginal likelihood estimation
in order to decide which is more accurate; and the application of
near-exact non-similar critical values of the tests obtained using SA.

Themodels and assumptions are discussed next; then descriptions of
the APO test and marginal likelihood based classical tests are provided.
Section 4 briefly introduces SA and discusses how exact and near-exact
non-similar critical values can be obtained. Section 5 presents the details
of theMonte Carlo experiment and summarizes themain findings. An il-
lustrative application of the g test to a specific data set is presented in
Section 6. Finally, concluding remarks reflect on the use of the APO test
andmarginal likelihood-based classical tests in the presence of unavoid-
able nuisance parameters.

2. Model and assumptions

Suppose we wish to test a linear regression model with AR(1) er-
rors

H0 : yt ¼ x′tβ þ ut ; ut ¼ ρut−1 þ et ; t ¼ 1;…;n; ð1Þ

against a dynamic linear regression model with white noise errors

Ha : yt ¼ μyt−1 þ x′tβ þ et ; t ¼ 2;…;n; ð2Þ

1 Jones' study isworthmentioningbecause, unlike other studies, Jones uses a number of
different seemingly acceptable models for the same data and explains the importance of
correct modeling. His study is a valuable guide for learning model building.

2 However Jones did not consider the possibility of moving average errors. This is also a
possibility and can be easily tested (Sriananthakumar and King, 2006).

3 Throughout this paper the term size is used to denote probability of a type I error.
4 Always feasible as long as consistent point estimates of the nuisance parameters

are available.

5 This idea was originally suggested and investigated by Berger and Boos (1994).
6 This testing problem can be easily generalized to include any competing models.
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