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Abstract

High dimension low sample size data, like the microarray gene expression levels, pose numerous challenges to conventional
statistical methods. In the particular case of binary classification, some classification methods, such as the support vector machine
(SVM), can efficiently deal with high-dimensional predictors, but lacks the accuracy in estimating the probability of membership of
a class. In contrast, the traditional logistic regression (TLR) effectively estimates the probability of class membership for data with
low-dimensional inputs, but does not handle high-dimensional cases. The study bridges the gap between SVM and TLR by their loss
functions. Based on the proposed new loss function, a pseudo-logistic regression and classification approach which simultaneously
combines the strengths of both SVM and TLR is also proposed. Simulation evaluations and real data applications demonstrate that
for low-dimensional data, the proposed method produces regression estimates comparable to those of TLR and penalized logistic
regression, and that for high-dimensional data, the new method possesses higher classification accuracy than SVM and, in the
meanwhile, enjoys enhanced computational convergence and stability.
© 2007 Published by Elsevier B.V.
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1. Introduction

Technological invention and information advancement have revolutionized scientific research and technological
development. Many sophisticated large-scale data sets have recently been collected. These new data sets and streams
pose numerous challenges to conventional statistical or data mining methods due to not only the massive size, but also
the high dimensionality.

In this paper, we focus on high dimension low sample size data, the so-called large p small n data, with binary class
label responses. Notable examples include clinical assessment of tumor types for microarray gene expression data, in
which the number of variables (genes) far exceeds the number of samples (arrays). The traditional logistic regression
(TLR) method effectively estimates the probability of class membership for large n small p data, but does not handle
data sets with high-dimensional predictors. Besides, a monotone likelihood problem will occur when the predictors are
fully separable (Firth, 1993). In that case, logistic regression will give unreliable estimates. See Albert and Anderson
(1984) and Santner and Duffy (1986) for details.
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On the other hand, the support vector machine (SVM) has emerged as a powerful pattern classification tool for high-
dimensional data. By means of the dual representation, SVM translates an optimization problem of p-variables into the
counterpart of n-variables. This characteristic enables SVM to efficiently deal with high-dimensional predictors. Refer
to Vapnik (1996) and Cristianini and Shawe-Taylor (2000), among many others, for details. Nonetheless, unlike the
logistic regression, SVM lacks the accuracy in estimating the probability of membership for each class. Therefore, SVM
is less appropriate to estimate the class probability, which is of significant importance in various scientific disciplines.

In this paper, we aim to develop a high-dimensional regression and classification method which simultaneously
combines the strengths of both SVM and TLR. To achieve this goal, we bridge the gap between SVM and TLR by
their loss functions. Based on our proposed new loss function, we further propose a pseudo-logistic regression (PsLR)
and classification approach which integrates the classification ability of SVM and the regression capability of TLR.
Simulation evaluations and real data applications demonstrate that for low-dimensional data, the proposed method
produces regression estimates comparable to those of TLR and penalized logistic regression (PeLLR) (Eilers et al.,
2001), and that for high-dimensional data, the new method possesses higher classification accuracy than SVM and, in
the meanwhile, enjoys enhanced computational convergence and stability. As will be discussed in Section 3.2, the PeLR
when applied to high-dimensional data, reduces the size of the estimating equations, but could not genuinely resolve
the problems of computational instability and solution non-uniqueness. In contrast, our proposed method effectively
overcomes these problems.

This paper is organized as follows. In Section 2, we review TLR and SVM, and connect them by their loss functions.
In Section 3, we propose the PsSLR method. In Section 4, we present some property of PsSLR and propose a bias
correction procedure for PsLR estimates. We apply our method to simulated data in Section 5 and real data sets in
Section 6. Section 7 concludes this paper by a discussion. All detailed derivations are postponed to the Appendix.

2. Logistic regression and SVM

In this section, we start by reviewing TLR and SVM. After that, we will connect these two methods by their loss
functions, which motivate the proposed PsLR method.

2.1. Logistic regression

Let Y € {0, 1} indicate the class label of a sample and X = (Xq,..., X p)T be the vector of explanatory variables.
Define the conditional mean response function by m(x) = P(Y = 1|X = x) and the canonical parameter by 0(x) =
In[m(x)/{1 — m(x)}]. In TLR, it is assumed that

0(x) = fy + <" B, (2.1)

where fjyand f=(f;,..., p)T are unknown parameters.
For independent samples {(x;, y;)}7_; drawn from (X, ), the maximum likelihood estimates of f3, and f are obtained
from minimizing the negative conditional log-likelihood function
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where X; = (1, xiT)T and = (f, ,BT)T. For computational implementation, it is customary to use the Newton—Raphson
algorithm which requires the score vector
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