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a b s t r a c t

Regularized logistic regression is a useful classification method for problems with few samples and a
huge number of variables. This regression needs to determine the regularization term, which amounts
to searching for the optimal penalty parameter and the norm of the regression coefficient vector. This
paper presents a new regularized logistic regression method based on the evolution of the regression
coefficients using estimation of distribution algorithms. The main novelty is that it avoids the determi-
nation of the regularization term. The chosen simulation method of new coefficients at each step of
the evolutionary process guarantees their shrinkage as an intrinsic regularization. Experimental results
comparing the behavior of the proposed method with Lasso and ridge logistic regression in three cancer
classification problems with microarray data are shown.

� 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Logistic regression (Hosmer & Lemeshow, 2000) is a simple and
efficient supervised classification method that provides explicit
probabilities of class membership and an easy interpretation of
the regression coefficients of predictor variables. The class variable
is binary while the explanatory variables are of any type, not even
requiring strong assumptions, like gaussianity of the predictor
variables given the class or assumptions about the correlation
structure. This lends great flexibility to this approach having
shown a very good performance in a variety of fields (Baumgartner
et al., 2004; Kiang, 2003).

Many of the most challenging current classification problems
involve extremely high dimensionality k (thousands of variables)
and small sample sizes N (less than one hundred cases). This is
the so-called ‘‘large k, small N” problem, since it hinders proper
parameter estimation when trying to build a classification model.
Microarray data classification falls into this category.

In logistic regression we identify four problems in the ‘‘large k,
small N” case. First, a large number of parameters – regression
coefficients – have to be estimated using a very small number of
samples. Therefore, an infinite number of solutions is possible as
the problem is undetermined. Second, multicollinearity is largely
present. As the dimensionality of the model increases, the chance

grows that a variable can be constructed as a linear combination
of other predictor variables, thereby supplying no new informa-
tion. Third, over-fitting may occur, i.e. the model may fit the train-
ing data well but perform badly on new samples. These problems
yield unstable parameter estimates. Fourth, there are also compu-
tational problems due to the large number of predictor variables.
Traditional algorithms for finding the estimates numerically, like
Newton–Raphson’s method (Thisted, 1988), require prohibitive
computations to invert a huge, sometimes singular matrix, at each
iteration.

Within the context of logistic regression, the ‘‘large k, small N”
problem has been tackled from three fronts: dimensionality reduc-
tion, feature (or variable) selection and regularization, or some-
times a combination of them.

As regards dimensionality reduction, principal components anal-
ysis is one of the most widespread methods (Aguilera, Escabias, &
Valderrama, 2006). This preprocessing of high-dimensional vari-
ables outputs transformed variables, of which only a reduced set
is used. These transformed variables are the classifier inputs. The
main drawback is that principal components tend to need all the
original variables in their expressions. As a result, the information
requirements of model application are not reduced and there is
also a loss of interpretability of the variables. Furthermore, there
is not guarantee of class separability coinciding with the selected
principal components (Weber, Vinterbo, & Ohno-Machado, 2004).
Other methods, such as partial least squares (Antoniadis,
Lambert-Lacroix, & Leblanc, 2003) or an adaptive dimension reduc-
tion through regression (Nguyen & Rocke, 2002) have also been
used.

0957-4174/$ - see front matter � 2010 Elsevier Ltd. All rights reserved.
doi:10.1016/j.eswa.2010.09.140

⇑ Corresponding author. Tel.: +34 913366596; fax: +34 913524819.
E-mail addresses: mcbielza@fi.upm.es (C. Bielza), pedro.larranaga@fi.upm.es (V.

Robles), vrobles@fi.upm.es (P. Larrañaga).

Expert Systems with Applications 38 (2011) 5110–5118

Contents lists available at ScienceDirect

Expert Systems with Applications

journal homepage: www.elsevier .com/locate /eswa

http://dx.doi.org/10.1016/j.eswa.2010.09.140
mailto:mcbielza@fi.upm.es
mailto:pedro.larranaga@fi.upm.es
mailto:vrobles@fi.upm.es
http://dx.doi.org/10.1016/j.eswa.2010.09.140
http://www.sciencedirect.com/science/journal/09574174
http://www.elsevier.com/locate/eswa


Feature selection methods yield parsimonious models which re-
duce information costs, are easier to explain and understand, and
increase model applicability and robustness. The selected features
are good for discriminating between the different classes and may
be sought via different heuristic search approaches (Liu & Motoda,
2008). The goodness of a proposed feature subset may be assessed
via an initial screening process using a scoring metric. The metric is
based on intrinsic characteristics of the data computed from
simple statistics on the empirical distribution, totally ignoring
the effects of the selected features on classifier performance. This
is the so-called filter approach to feature selection in machine
learning, or screening in statistics (West et al., 2001). By contrast,
the wrapper approach searches good subsets using the classifier it-
self as part of their function evaluation (Kohavi & John, 1997). A
performance estimate of the classifier trained with each subset as-
sesses the merit of this subset. Some recent studies combine filter
and wrapper approaches (Uncu & Türksen, 2007). In the context of
logistic regression and k ? N, Lee, Lee, Park, and Song (2005) pro-
pose different filter metrics to select a fixed number of features, the
top-ranked ones, such that they are always fewer than the sample
size.Avoiding the curse of dimensionality in a similar way, Weber
et al. (2004) perform a preliminary feature selection by choosing
the N � 1 variables maximally correlated with the class variable.
In a second phase, a logistic regression model is constructed with
the selected features, and it is further simplified via a backwards
variable selection.

The third front to tackle the ‘‘large k, small N” problem is using
regularization methods. These methods impose a penalty on the
size of logistic regression coefficients, trying to shrink them
towards zero. Therefore, regularized estimators are restricted max-
imum likelihood estimators (MLE), since they maximize the likeli-
hood function subject to restrictions on the logistic regression
parameters. The little bias allowed provides more stable estimates
with smaller variance. Regularization methods are more continu-
ous than usual discrete processes of retaining-or-discarding fea-
tures thereby not suffering as much from high variability (Hastie,
Tibshirani, & Friedman, 2001). This shrinkage of coefficients was
initially introduced in the ordinary linear regression scenario by
Hoerl and Kennard (1970), where restrictions were spherical. This
is the so-called ridge or quadratic (penalized) regression. Lee and
Silvapulle (1988), LeCessie and vanHouwelingen (1992) extended
the framework to logistic regression. Ridge estimators are expected
to be on average closer to the real value of the parameters than the
ordinary unrestricted MLEs, i.e. with smaller mean-squared error.
See Fan and Li (2006), Bickel and Li (2006) for recent developments
and a unified conceptual framework of the regularization theory.

Here we introduce estimation of distribution algorithms (EDAs) as
intrinsic regularizers within the logistic regression context. EDAs
are optimization heuristics included in the class of stochastic pop-
ulation-based search methods (Larrañaga & Lozano, 2002; Lozano,
Larrañaga, Inza, & Bengoetxea, 2006; Pelikan, 2005). EDAs work by
constructing an explicit probability model from a set of selected
solutions, which is then conveniently used to generate new prom-
ising solutions in the next iteration of the evolutionary process. In
our proposal, an EDA obtains the regularized estimates in a direct
way in the sense that the objective function to be optimized is still
the likelihood, not including any regularization term. It is a specif-
ically chosen simulation process during the evolution which
accounts intrinsically for the regularization. EDAs receive the unre-
stricted likelihood equations as inputs and generate the restricted
MLEs as outputs.

The paper is organized as follows. Section 2 reviews both the
classical and regularized versions of the logistic regression model.
Section 3 describes EDAs and how we propose to use them to solve
the regularized case. Experimental studies on several microarray
data sets, a great exponent of the ‘‘large k, small N” problem, are

presented in Section 4. Finally, Section 5 includes some conclusions
and future work.

2. Regularized logistic regression

2.1. The need for regularizing logistic regression

Assume we have a (training) data set DN of N independent sam-
ples from some experiment. DN ¼ fðcj; xj1; . . . ; xjkÞ; j ¼ 1; . . . ;Ng,
where xj ¼ ðxj1; . . . ; xjkÞt 2 Rk is the value of the jth sample, xji indi-
cates the ith variable outcome of the jth sample and cj is the known
class label of the jth sample, 0 or 1, for the binary case considered
in this paper.

Logistic regression uses the x values to determine the probabil-
ity p of a sample belonging to one of the two classes. Thus, we have
k + 1 variables: the class or response dichotomous variable C and
its predictor variables or covariates X1, . . ., Xk. The logistic model
should be able to classify any new sample that comes along, char-
acterized by just its covariate values.

Let pj denote P(C = 1jxj), j = 1, . . ., N. Then the logistic regression
model is defined as

log
pj

1� pj
¼ b0 þ

Xk

i¼1

bixji ¼ gj () pj ¼
1

1þ e�gj
ð1Þ

where b = (b0,b1, . . . ,bk)t denotes the vector of regression coeffi-
cients including a constant or intercept b0. These are usually esti-
mated from data by the maximum likelihood estimation method.
From DN , the log-likelihood function is built as

lðbÞ ¼
XN

j¼1

ðcj logpj þ ð1� cjÞ logð1� pjÞÞ; ð2Þ

where pj is given by expression (1). Maximum likelihood estima-
tors, bbi, are obtained by maximizing l with respect to b. Let c denote
the vector of response values cj (j = 1, . . . ,N), p be the vector of pj

values, X be an N � k matrix with each row given by xt
j , and u an

N-vector of ones. Thus, the following system of k + 1 equations
and k + 1 unknowns – called the likelihood equations – has to be
solved:

@l
@b
¼ Ztðc� pÞ ¼ 0;

where Z is the matrix [ujX].
Newton–Raphson’s algorithm is traditionally used to solve the

resulting nonlinear equations for bbi numerically. Each iteration pro-
vides an updating formula given by

b̂new ¼ b̂old þ ðZtWoldZÞ�1Ztðc� p̂oldÞ;

where b̂ ¼ ðb̂0; b̂1; . . . ; b̂kÞt , and p̂ denotes the vector of estimated
values at that iteration, i.e. its jth-component is

p̂old
j ¼ 1þ e�ðb̂

old
0 þb̂old

1 xj1þ���þb̂old
kx

xjkÞ
h i�1

; j ¼ 1; . . . ;N

and Wold denotes a diagonal matrix with elements p̂old
j 1� p̂old

j

� �
.

In the context of data involving high dimensionality (k) and
small sample sizes (N), the logistic regression approach has a num-
ber of problems, explained in the introduction section: undeter-
mined problem to be solved, multicollinearity, over-fitting and
computational difficulties. Regularization emerges as one of the
most promising solutions for these problems. In this section we
review the state-of-the-art in the case of regularized logistic
regression.

Regularized logistic regression maximizes the penalized log-
likelihood given by
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