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1. Introduction

Generalized linear mixed models (GLMM'’s) are an extension of generalized linear models that introduce random effects
to the linear predictor. The presence of packages that fit GLMM’s in widely available software such as SAS (NLMIXED), Stata
and R (Ime4) is indicative of the extensive use of these models in modern research and data analyses. GLMM'’s are useful
models for analysing repeated measurements and clustered observations, however, the majority of estimation methods that
have been developed are based on the normality assumption of random effects (Breslow and Clayton, 1993). This assumption
provides a robust and convenient way to estimate the fixed effects but may compromise estimation efficiency (Tao et al.,
1999). In addition, Neuhaus et al. (1992, 2012) demonstrate that misspecification of the random effects distribution can lead
to biased estimation of the intercept and covariates associated with the random effects.

A GLMM is typically specified as a conditional distribution of the data vector y given the random (possibly vector) effects
y, the random effect covariate vector x and the fixed effect covariate vector z. In a clustered data setting, the n; observations

on the ith cluster, y;1, . . ., Yin,» are conditionally independent and modelled as
nj
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where z; and x;; are the fixed and random covariate vectors respectively characterizing observation y;, i = 1,...,n.
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GLMM'’s connect the mean w; = E[y;|y;, Zj, X;;] to the covariate vectors x and z through

g(wy) =i B+ Xy;. (2)
where g is the link function. We refer to the distribution of the random effects G, as the mixing distribution. Parametric
mixture models assign G, a parametric distribution, often a normal distribution as in Stiratelli et al. (1984) and McCulloch
et al. (2008). Semiparametric mixture models traditionally estimate the mixing distribution G, using nonparametric
maximum likelihood estimation methods (NPMLE) (Laird, 1978), but these approaches have typically considered random
intercepts only.

Clustered binary data arise frequently in clinical studies where repeated measurements are gathered on experimental
units. An example is the study by Bent et al. (2006) in which 225 men with moderate to severe symptoms of benign prostatic
hyperplasia were randomized to receive one year of treatment with either saw palmetto extract (n = 112) or placebo
(n = 113). The study measured outcomes and predictors at 8 visits over a 14 month period. The outcome of interest is a
binary indicator of a severe symptom, that is, a level of the American Urological Association Symptom Index score > 20.
The predictors of interest are: the binary indicator of treatment group, month of the visit, and the month by treatment group
interaction. Here it is natural to model the outcomes using patient-specific random effects.

We consider the binomial model for f in (1) above and use the canonical logistic link, g. The random intercept and random
slope vary from cluster to cluster so that the jth observed response of cluster i, y; has a Bernoulli(pj) distribution. The linear
model in (2) becomes

logit (pj) = a; + bix; + Zliﬂﬁz, (3)
1

where g; and b; denote the random intercept and slope for cluster i, respectively, and [ indexes the number of fixed covariates
in the model. Here we assume that the random effects vector y; = (a;, b;) has joint distribution G,,.

Our goal is to compute the NPMLE for G,, and the MLE for . Earlier methods available in the literature fit univariate
random effects and include the expectation-maximization (EM) algorithm (Laird, 1978), the vertex direction method (VDM)
(Fedorov, 1972; Wu, 1978a,b), the vertex exchange method (VEM) (Bohning, 1985) and the intra-simplex direction method
(ISDM) (Lesperance and Kalbfleisch, 1992). Wang (2007) proposed an algorithm which is a modification of Atwood’s (1976)
quadratic method. He used a linear regression formulation to solve the quadratic programming sub-problem for estimating
the mixing weights for which Atwood did not offer a detailed solution. Like ISDM, Wang added multiple support points at
each iteration rather than one as in Atwood’s algorithm, and he discarded unwanted support points that have zero mass at
each iteration whereas Atwood combined nearby support points. Wang (2007) showed that the algorithm converges at a
faster rate than previously published algorithms.

This paper presents a new algorithm, the Direct Search Directional Derivative (DSDD) method, that computes nonpara-
metric maximum likelihood estimates of a mixing distribution for a logistic regression model containing multiple random
effects. The algorithm uses a direct search method (Torczon, 1991) to identify maxima of the gradient function to include as
mixing distribution support points. Then the algorithm incorporates the quadratically convergent method of Wang (2007)
to estimate the mixing proportions.

The structure of the paper is as follows. Section 2 introduces and reviews some of the literature on NPML estimation of
mixture models. In Section 3, we describe the DSDD algorithm for computing the NPMLE of G,, with 8 fixed and compare it
with an alternative. Section 4 compares two methods for computing the joint MLE’s of G,, and B. A dataset from the National
Basketball Association (NBA) is analysed using a mixed model in Section 5 and Section 6 concludes with a discussion.

2. Nonparametric maximum likelihood estimation
Ignoring the dependence on f, the general mixture model has the form

f5.Gy) = / FOIAG, (), (@)
2

where f(y|y), ¥y = (v1, ..., ¥p) € 2 C R?,is adensity (Lindsay, 1995). Given a random sample y; - - - y,,, the log-likelihood
(4) takes the form

IGy) = Zlog{ / fcyi|y>dcy(y)}. (5)
i=1 2

Several suggestions have been provided in the literature to compute the NPMLE of the mixing distribution G, over the set
of all possible distributions, M. The geometry of mixture likelihoods in Lindsay (1983) provides the framework for such
estimation and we provide a brief review of his work.

LetL, = (Li(p), ..., L, ()T be the n likelihoods corresponding to y; - - - y, where Li(y) o f(y;|p). The log-likelihood
for a given mixing distribution G,, in (5) is

16 = Yo [ LndG, ). (6)
i=1
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