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a b s t r a c t

An algorithm that computes nonparametric maximum likelihood estimates of a mixing
distribution for a logistic regression model containing random intercepts and slopes is
proposed. The algorithm identifies mixing distribution support points as the maxima of
the gradient function using a direct search method. The mixing proportions are then
estimated through a quadratically convergent method. Two methods for computing the
joint maximum likelihood estimates of the fixed effects parameters and the mixing
distribution are compared. A simulation study demonstrates the performance of the
algorithms and an example using National Basketball Association data is provided.
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1. Introduction

Generalized linear mixed models (GLMM’s) are an extension of generalized linear models that introduce random effects
to the linear predictor. The presence of packages that fit GLMM’s in widely available software such as SAS (NLMIXED), Stata
and R (lme4) is indicative of the extensive use of these models in modern research and data analyses. GLMM’s are useful
models for analysing repeatedmeasurements and clustered observations, however, themajority of estimationmethods that
have been developed are based on the normality assumption of randomeffects (Breslow andClayton, 1993). This assumption
provides a robust and convenient way to estimate the fixed effects but may compromise estimation efficiency (Tao et al.,
1999). In addition, Neuhaus et al. (1992, 2012) demonstrate thatmisspecification of the random effects distribution can lead
to biased estimation of the intercept and covariates associated with the random effects.

A GLMM is typically specified as a conditional distribution of the data vector y given the random (possibly vector) effects
γ , the random effect covariate vector x and the fixed effect covariate vector z. In a clustered data setting, the ni observations
on the ith cluster, yi1, . . . , yini , are conditionally independent and modelled as

Yi1, . . . , Yini |γ i, zi1, . . . , zini , xi1, . . . , xini ∼

ni
j

f (yij|γ i, zij, xij), (1)

where zij and xij are the fixed and random covariate vectors respectively characterizing observation yij, i = 1, . . . , n.
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GLMM’s connect the mean µij = E[yij|γ i, zij, xij] to the covariate vectors x and z through

g(µij) = zTijβ + xTijγ i, (2)
where g is the link function. We refer to the distribution of the random effects Gγ as the mixing distribution. Parametric
mixture models assign Gγ a parametric distribution, often a normal distribution as in Stiratelli et al. (1984) and McCulloch
et al. (2008). Semiparametric mixture models traditionally estimate the mixing distribution Gγ using nonparametric
maximum likelihood estimation methods (NPMLE) (Laird, 1978), but these approaches have typically considered random
intercepts only.

Clustered binary data arise frequently in clinical studies where repeated measurements are gathered on experimental
units. An example is the study by Bent et al. (2006) inwhich 225menwithmoderate to severe symptoms of benign prostatic
hyperplasia were randomized to receive one year of treatment with either saw palmetto extract (n = 112) or placebo
(n = 113). The study measured outcomes and predictors at 8 visits over a 14 month period. The outcome of interest is a
binary indicator of a severe symptom, that is, a level of the American Urological Association Symptom Index score > 20.
The predictors of interest are: the binary indicator of treatment group, month of the visit, and themonth by treatment group
interaction. Here it is natural to model the outcomes using patient-specific random effects.

We consider the binomialmodel for f in (1) above and use the canonical logistic link, g . The random intercept and random
slope vary from cluster to cluster so that the jth observed response of cluster i, yij has a Bernoulli(pij) distribution. The linear
model in (2) becomes

logit

pij


= ai + bixij +


l

zijlβl, (3)

where ai and bi denote the random intercept and slope for cluster i, respectively, and l indexes the number of fixed covariates
in the model. Here we assume that the random effects vector γ i = (ai, bi) has joint distribution Gγ .

Our goal is to compute the NPMLE for Gγ and the MLE for β. Earlier methods available in the literature fit univariate
random effects and include the expectation–maximization (EM) algorithm (Laird, 1978), the vertex directionmethod (VDM)
(Fedorov, 1972; Wu, 1978a,b), the vertex exchange method (VEM) (Böhning, 1985) and the intra-simplex direction method
(ISDM) (Lesperance and Kalbfleisch, 1992). Wang (2007) proposed an algorithmwhich is a modification of Atwood’s (1976)
quadratic method. He used a linear regression formulation to solve the quadratic programming sub-problem for estimating
the mixing weights for which Atwood did not offer a detailed solution. Like ISDM, Wang added multiple support points at
each iteration rather than one as in Atwood’s algorithm, and he discarded unwanted support points that have zero mass at
each iteration whereas Atwood combined nearby support points. Wang (2007) showed that the algorithm converges at a
faster rate than previously published algorithms.

This paper presents a new algorithm, the Direct Search Directional Derivative (DSDD) method, that computes nonpara-
metric maximum likelihood estimates of a mixing distribution for a logistic regression model containing multiple random
effects. The algorithm uses a direct search method (Torczon, 1991) to identify maxima of the gradient function to include as
mixing distribution support points. Then the algorithm incorporates the quadratically convergent method of Wang (2007)
to estimate the mixing proportions.

The structure of the paper is as follows. Section 2 introduces and reviews some of the literature on NPML estimation of
mixture models. In Section 3, we describe the DSDD algorithm for computing the NPMLE of Gγ with β fixed and compare it
with an alternative. Section 4 compares twomethods for computing the joint MLE’s of Gγ and β. A dataset from the National
Basketball Association (NBA) is analysed using a mixed model in Section 5 and Section 6 concludes with a discussion.

2. Nonparametric maximum likelihood estimation

Ignoring the dependence on β, the general mixture model has the form

f (y,Gγ) =


Ω

f (y|γ)dGγ(γ), (4)

where f (y|γ), γ = (γ1, . . . , γp) ∈ Ω ⊂ Rp, is a density (Lindsay, 1995). Given a random sample y1 · · · yn, the log-likelihood
(4) takes the form

l(Gγ) =

n
i=1

log


Ω

f (yi|γ)dGγ(γ)


. (5)

Several suggestions have been provided in the literature to compute the NPMLE of the mixing distribution Gγ over the set
of all possible distributions, M. The geometry of mixture likelihoods in Lindsay (1983) provides the framework for such
estimation and we provide a brief review of his work.

Let Lγ = (L1(γ), . . . , Ln(γ))T be the n likelihoods corresponding to y1 · · · yn where Li(γ) ∝ f (yi|γ). The log-likelihood
for a given mixing distribution Gγ in (5) is

l(Gγ) =

n
i=1

log


Li(γ)dGγ(γ). (6)
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