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Abstract

To improve the method of Dong and Wong (Fuzzy Sets and Systems 21 (1987) 183-199) for obtaining the fuzzy weighted
average, a steepest descent/ascent method was proposed by Liou and Wang (Fuzzy Sets and Systems 49 (1992) 307-315). In
this paper, we propose to replace the steepest descent/ascent method by linear programming, which is a much more powerful
approach for large problems. The reduction of the original nonlinear programming problem into a linear one is achieved by
the use of the Charnes and Cooper’s linear transformation method. The example used by Dong and Wong is again used to
illustrate the approach. (©) 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

In multiple criteria decision making, the environ-
ment is frequently vague and difficult to define. Thus,
the weighted average is frequently expressed in fuzzy
numbers as follows:

y f(X],xz,...,Xn,Wl,Wz,...Wn)

WX WaXp e A WXy, (0
Wit wy et w,

where x1,x;,...x, are fuzzy numbers in fuzzy sets
Ay, Ao, ... Ap; Wi, Wa,...,w, are fuzzy weights in
fuzzy sets Wy, W,,...,W,, and y is the dependent or
output fuzzy variable in fuzzy set B. To aggregate
this fuzzy expression so that the value of y can be
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obtained, fuzzy operations are needed. In principle,
these operations can be carried out by the use of
Zadeh’s extension principle or fuzzy extended oper-
ations. However, the implementation of this solution
procedure is complicated due to the fact that the re-
sulting problem by applying the extension principle is
a nonlinear programming problem and, furthermore,
the conjunction and disjunction operations can lead
to irregular membership functions. Dong and Wong
[3] proposed a computational algorithm based on «-
cuts and interval analysis to overcome this difficulty.
Their method provides a discrete but exact solu-
tion to the fuzzy weighted average. Later, Liou and
Wang [4] improved this approach by using a steepest
descent/ascent method to obtain the optima in Steps
3 and 4 of the Dong and Wong’s procedure. Based on
Dong and Wong’s procedure, 2>" evaluations were
needed for each o-cut or interval, Liou and Wang
reduced this requirement to 2"+,
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However, even with the above improvement, the
computational requirements are still very high even for
moderate sized problems. In this paper, we propose to
replace the steepest descent/ascent optimization pro-
cedure by linear programming, which is, of course,
a much more powerful technique than the steepest
descent/ascent approach. The original nonlinear frac-
tional programming problem is transformed into a lin-
ear programming problem by the use of the Charnes
and Cooper’s linear transformation [1,2]. The advan-
tage of this approach is that the reduction to linear
problem is very straightforward and simple. The orig-
inal example used by Dong and Wong is again used
to illustrate the approach.

2. Dong and Wong’s procedure [3]

Dong and Wong’s approach is based on «-cuts to
obtain the different intervals and combinatorial inter-
val analysis to avoid some of the difficulties such as
the multiple occurrence of variables. For later ref-
erence, their procedure is briefly summarized in the
following:

1. Discretize the complete range of the membership
[0,1] of the fuzzy number into the following fi-
nite number of m-values or m o-cuts: oy, tlp, ..., Uy,
where the degree of accuracy depends on the num-
ber of a-cuts or the number m.

2. For each o, find the corresponding intervals for 4;
inx; and W; in w;. Denote the end points of the inter-
vals of x; and w; by [a;, b;] and [¢;,d;],i = 1,2,...,n,
respectively.

3. Construct the 2%" distinct permutations of the 2n
array (X1,X2,...,Xn; Wi, Way.ou, Wy).

4. Compute yr=f(X1,Xk2, - - - s Xkns Wk1> Wk2s- -+ > Wkn )5
where (Xg1,Xk2, - -« s Xk Wils Wk2s---> Wi ), 18 the
kth permutation of the 2%" distinct permutations,
k=1,2,...,2%". Then the desired intervals for y is

y= [mkin yk,ml?x yk] . (2)

5. Repeat Steps 2—4 for every o, j=1,2,...,m.
Since there are 2% permutations, there are 22" eval-
uations for each a-cut.

3. Liou and Wang’s improvement [4]
Liou and Wang introduced the following notations:

wiay +wyaz + - - + wyay

b (3)

Jrwi,wo, .., w,) =

wiby + wyby + - - - +w,b,
Wi, Wa, ey Wy ) = 4
Ju(wi, w, ) Wit wa b 4)

and proved the following theorems:

min: f(X1,X0, ..., Xp, Wi, Wa, ..., Wy)

=min: fr(w;,wy,...,wy,), (5)
max: f(X1,X2, ..., Xy, W, Wa,..oo, Wy)

=max: fy(w,wa,..., W) (6)

Because of the above theorems, the weight vector
wi, i=1,2,...,n are the only unknowns in the origi-
nal optimization problem of Liou and Wong, and the
unknowns for the other vector x;, i=1,2,...,n, are
obtained by the use of the above theorems. In other
words, for every o, the left and right end points of
the interval of y can be obtained by the evaluations of
the end points of (wy, ws, ..., w,) only. Remember that
the left and right end points for the intervals of w;, are
¢; and d;, respectively, with i=1,2,...,n. Thus, the
number of evaluations for each o; is reduced from 22"
to 2", These investigators also proved three more
theorems, by the use of which, they developed a pro-
cedure to obtain the optimum based on the steepest
descent/ascent approach.

4. Charnes and Cooper’s transformation [1,2]

Instead of using the steepest descent/ascent ap-
proach to solve the nonlinear fractional programming
problem, we wish to use the linear programming ap-
proach by first transforming this nonlinear problem
into a linear one by using the Charnes and Cooper’s
linear transformation technique. From the two the-
orems represented by Eqs. (5) and (6), the mini-
mum and maximum for the fuzzy weighted average
for each given o; can be obtained by solving the
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