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Linear-programming-based assessments of geometrical accuracy:
standard presentation and application area
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Abstract

An application of the linear programming (LP) approach to form and position accuracy assessments based on the minimum zone
(MinZ) method is considered. The standard form of the optimization function and constraints using linearized form of the substitute
feature is considered. A linearization-caused error is estimated by reference to the second order terms within the Taylor series
expansion of the rotation matrix. The acceptable range of the LP-based assessments is defined for some levels of an allowable
error. The LP-based assessment for a surface is simulated. Actual measurements show that the LP-based estimations have equal or
fewer values in comparison with those obtained by other methods.
 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

A modern 3D metrology employs measurements on
coordinate measuring machines (CMM) for observation
of actual surfaces[1–3]. When one uses these measure-
ments to estimate the accuracy of form and position, the
calculation process contains an optimization procedure
as a key step of the process. Depending on the type of
optimization criterion, two main groups of assessments
are applied: least mean square (LMS), and minimax.
Until recently, only the LMS-type assessments were
applied, but nowadays international and national stan-
dards for form and position tolerancing widely use mini-
mum zone (MinZ) for accuracy assessments[2,3]. As an
example, a comparison of two types of assessments for
flatness is given inFig. 1. The LMS-based assessment
�LMS is obtained as a sum�LMS = �max + �min of two
extreme point deviations from the mean plane (Fig. 1b),
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while the MinZ-based assessments are calculated as a
distance�MinZ between the MinZ boundaries (Fig. 1a).
Among the typical minimax assessments, such as
maximum inscribed, minimum circumscribed, and
MinZ, we will consider only the last-listed assessment.
When an accuracy of the surface or line is measured,
the MinZ is built as follows: a substituted feature (i.e.,
the feature of the nominal form) is extracted from the
measured points; the zone boundaries are built so that
all the points of the actual surface lie between or on
the boundaries of the zone, and the width of the zone
is minimal.

It has been known that a procedure of the MinZ con-
struction reduces to a solution of the minimax optimiz-
ation problem[4–8]. Various approaches are known to
solve this problem: statistical approach, computational
geometry techniques, non-linear programming, linear
programming, etc.

The Monte Carlo search[9] is a statistical method
based on the random selection of variables defining the
surface. Because of this random selection, this method
requires many sampling points to assure high accuracy.
Another statistical approach is described by Yang et al.
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Fig. 1. (a) MinZ-based—and (b) LMS assessments for flatness: 1—actual plane; 2, 3—external and internal boundaries of the MinZ; 4—LMS
plane.

[10]. Yang et al. used large sets of uniform sample points
measured from five machined surfaces and compared the
form error using individual points and fitted surfaces
obtained through a spatial statistic method. This method
takes into account a correlation between spatial coordi-
nates of the sample points. A large number of samples
(on the order of 1000) is required to make this method
feasible.

In the widespread computational geometry technique,
specific geometry features are built, such as convex
hulls, Voronoi diagrams, and so on. A convex hull algor-
ithm [6,11–14] is based on constructing the minimum
polygon that will enclose all the measurement points.
For straightness and flatness, Traband et al. [11]
presented a method based on the concept of a convex
hull of the measurement data. The algorithm for evaluat-
ing flatness tolerance based on constructing a 3D convex
hull is described by Lee [13]. The overall solution pro-
cedure consists of three stages, and the complexity of
this method becomes O(N 2logN), where N is the number
of sampled points. As described by Lin et al. [12], the
convex hull in 3D space is a minimum polyhedron that
encloses all the given points. To compute this poly-
hedron, the projection of these points in the XY, XZ, and
YZ planes must be first computed. These convex hulls
are then merged together to obtain set of vertices for
the polyhedron. The procedure for calculating MinZ is
reduced to calculating the distance of each point from
each of the faces of the convex polyhedron. Samuel et
al. [14] developed an algorithm consisting of five steps
for function-oriented evaluation of straightness and flat-
ness using minimum and maximum enveloping features.
The overall complexity of this algorithm is O(NlogN).

The Voronoi diagrams method [9,15,17] is based on
collecting the nearest or farthest ‘neighborhood’ for each
of the measurement points. The circularity assessment
method proposed by Murthy et al. [9] is based on the
construction of both the nearest Voronoi diagram and
the farthest Voronoi diagram and then finding the inter-
section of the two. Roy and Xu [16] proposed a compu-
tational technique for the cylindricity assessment which

is based on measurements of actual cylindrical surfaces
in some cross-sections. The 2D MinZ is built for each
cross-section using Voronoi diagrams. The axis of the
3D MinZ is obtained by means of an LMS technique,
and then the diameters of the tolerance zone are estab-
lished as a minimum and maximum of the diameters in
the cross-section. In this method, it is necessary to have
more than three points in each cross-section; therefore,
this method cannot be applied if, for example, the
measurement points are located along the helical line.
Huang [17] used 3D Voronoi diagrams to construct the
MinZ for sphericity evaluation. The Voronoi diagram in
a 3D space is defined as a bisector plane between two
measured points, where any point on plane is of equal
distance to each of the corresponding measured points.

Non-linear programming [5,8,18,19] is applied when
the problem is formulated as a non-linear optimization
problem with respect to the optimization parameters. It
must be noted that non-linear algorithms are rather com-
plicated. Wang [5] proposed a non-linear optimization
method for the straightness and flatness MinZ evalu-
ation. The computational results show the relatively high
performance of the optimization method; however, con-
vergence to local optimal solutions due to the non-con-
vex objective function and computational complexity of
the problems will be a critical limitation on its practical
use. Radhakrishnan et al. [7] described the application
of an iterative cyclic coordinate algorithm to minimax
non-linear cylindricity estimation problem. The com-
plexity of this algorithm is shown to be O(N 6), where
N is the number of sampled points. Choi et al. [8] formu-
lated the construction of the MinZ as a non-linear uncon-
strained optimization problem and used an iterative
search technique to solve it. Orady et al. [19] developed
an iterative method for the MinZ evaluation of the cyl-
indricity. The proposed algorithm consists of seven
steps, beginning with the fitting by LMS.

The LP procedure used in the following papers has
well-established advantages over other minimax optim-
ization methods [20], such as a rich variety of effective
algorithms and software, fast computing, flexibility with



https://isiarticles.com/article/25079

