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Abstract

This paper presents an optimization algorithm for weight minimization of structures. The algorithm––denoted as

LSTRLP (line search trust region linear programming)––combines sequential linear programming (SLP) and Trust

region methods (TRM). LSTRLP solves a linearized sub-problem in each design cycle and accepts or rejects inter-

mediate designs based on a line-search strategy which detects if the eventual improvement in cost is actually the largest

possible. It is to be noticed that the present work is the closure to several studies carried out by the present authors in

order to improve the overall efficiency and robustness of the sequential linear programming method.

The LSTRLP algorithm is implemented by an optimization code written in Fortran 90. The optimization code is

tested in eight cases of weight minimization of bar truss and frame structures. The test cases include examples of large-

scale and configuration optimization. The results obtained here are compared to those presented in literature. The

optimizations are run also with sequential quadratic programming (SQP) routines implemented in commercial soft-

ware. The results indicate that LSTRLP is competitive with recently published algorithms and commercial software.
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1. Introduction

Sequential linear programming (SLP) is very popular in practical engineering since the linear solvers
utilized to solve the linearized sub-problems are easily available to designers. In optimum design of

structures, SLP is more attractive than other optimization methods because it requires structural analysis

only for computing gradients of the cost function and constraints. Trust region methods (TRM) are uni-

versally acknowledged robust and versatile optimization algorithms because of their excellent global
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Nomenclature

N number of optimization variables

j counter of optimization variables

NC number of inequality constraint functions

m counter of inequality constraints
NCact number of active constraint functions

ma counter of active constraints

NCV number of violated constraint functions

v counter of violated constraints

Xðx1; x2; . . . ; xN Þ design vector containing the optimization variables

W ðXÞ cost function of the optimization problem

GmðXÞ nonlinear inequality constraint functions

xlj lower bound of the jth optimization variable

xuj upper bound of the jth optimization variable

i iteration counter of the current design cycle

Xiðxi1; xi2; . . . ; xiN Þ, Xi
SOL design vector found in the ith optimization cycle by solving the current line-

arized sub-problem

XOPTðxopt;1; xopt;2; . . . ; xopt;N Þ optimum design vector updated each time the current iteration results in

design improvements

P i
0 linearization point used in the ith optimization cycle: point of the design space about which

the nonlinear problem is linearized

Xi
0ðxi0;1; xi0;2; . . . ; xi0;N Þ design vector defining the linearization point P i

0 used in the ith design cycle

dXTRðx1 � xi0;1; x2 � xi0;2; . . . ; xN � xi0;N Þ search direction vector originating from the linearization point

P i
0 of the current design cycle

X generic point of the design space: it is defined by the X ¼ Xi
0 þ dXTR vector where the N design

variable values are stored

qðX Þ trust region parameter computed at the X point of the design space

WAPPðX Þ approximate cost function computed at the X point of the design space

eiLINðX Þ linearization error computed at the X point of the design space in the ith optimization cycle

eLIM
i

LIN allowable linearization error computed in the ith design cycle

eSOLi

LIN linearization error computed at the intermediate solution of ith design cycle

eINVi

LIN linearization error computed for the intermediate solution obtained in the ði� 1Þth design
cycle (Xi�1) if the nonlinear functions are linearized about the current intermediate design

point (Xi)

Sk descent directions defined by perturbing the kth design variable

k counter of perturbed variables and search directions Sk

SLIM;r limit directions orthogonal to the gradient of cost function in the linearization point P i
0

Sdes;r descent directions obtained from the limit directions SLIM;r

r counter of the limit directions orthogonal to the gradient of cost function in P i
0

p counter of the feasible sub-segments (i.e., parts in which the solution step size kXi
SOL � Xi

0k is
divided) actually found when the check on local non-convexity of the constraint domain is

performed

r gradient operator
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