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1. Introduction

Service Parts Management is one of the main components of
strategic service logistics, requiring a complex decision making
process [1], that companies use to ensure that right spare parts and
resources are at the right place at the right time. From a producer
point of view spare parts are considered uneconomical since they
involve logistical and economical requirements; they might never
be used and the cost of inventory on hand is not negligible [2,3].
However, without spare parts on hand, a company’s customer
satisfaction levels could drop, since the customers has to wait for
long time before their products can be fixed.

The company’s trade-off is between spare parts inventory and
resources to achieve optimal customer satisfaction levels with
minimal costs. As suggested by Ref. [4], fill rate is a simple but
effective measure of inventory availability and customer satisfac-
tion can be related to the First Fill Rate Value (FFRV). In particular,
FFRV is a measure of fulfilment quality, corresponding to the ratio
between the order items satisfied by the available inventory and
the total number of received order items. FFRV can be evaluated for
different spare parts or sets of them [5], taking into account
production and cost constraints.

In this paper we propose a solution to this inventory
optimization by approaching it through the definition and the
solution of a stochastic linear programming problem (SLPP). This
planning involves quantities and variables associated with a
sequence of time intervals (called time buckets) composing the
planning horizon. In the proposed approach the quality constraints
are based on a piecewise linear regression of FFRV identified by
means of the analysis of historical data.

The focus of the work presented in this paper is to develop and
experiment an optimization model that is appropriate for facing
the inventory planning problem, i.e., that is able to suitably set the
safety factors taking into account costs and levels of service. The

problem will be solved with a scenario-generation method, firstly
formally defining the considered Inventory Stock Mix Optimiza-
tion Problem (ISMOP) and then introducing the details of the
proposed approach. The effectiveness of procedure will be
evaluated by presenting some experimental results.

2. The optimization problem

The ISMOP here considered consists in determining the optimal
safety stock levels for the stock of a set of spare parts so that the
total production and inventory cost is minimized, while a set of
quality constraints are satisfied.

We consider an optimization horizon T consisting of a sequence
of time intervals, the so-called time buckets, of a given fixed
duration (e.g., a week or a month); then we consider the
optimization decisions relevant to the time buckets t = 1, . . ., T.
For each bucket t we assume that a forecast fpt for the stock that
should be available for each spare part (or product) p 2 P can be
computed from the analysis of historic data; in particular, such
forecast includes two components:

f pt ¼ a pt þ s pt (1)

The apt component represents the average forecast, which takes
into account both the past average demand and its regularity,
whereas spt is the safety stock level for spare part p in the time
bucket t, which is introduced to consider in the forecast the
possibility of significant variations from the average. The higher is
the safety stock level the greater is the capability of the considered
supplier to face single and isolated peaks in the demand; on the
other hand, if such a capability is generally spread for all the
products in any time bucket, the consequent production and
inventory costs cannot usually be accepted. The ISMOP hence
corresponds to determine which is the optimal level of the safety
stock for the products in each time bucket, minimizing the
production and inventory cost, while taking into account the
quality of service.
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The historical data consist of a collection of spare part orders
received from customers in a past period that is long enough to
produce reliable estimates, but not too dated to make such
estimates sensitive to the demand trends in the recent past. As an
example, we can assume to collect data for the most recent past
time interval whose duration is twice the one of the optimization
horizon T. In addition, as customer orders usually correspond to a
set of spare parts’ requests, we denote as order items the single
requests included in a customer order; such an information will be
used in the following to define a specific quality measure.

We assume that for each spare part p and each past time bucket
t = �2T, �2T + 1, . . ., 0, the following data were collected:

� Cp: handling cost for product p;
� Qpt: total quantity of product p ordered in the bucket t;
� Opt: the number of order items for product p in time bucket t;
� Dptr: the quantity of product p ordered in order item r in time

bucked t.

On the basis of such sets of data we estimate, by using a forecast
model (derived from a time series analysis), for each product p and
each future time bucket in the optimization horizon t, the
following quantities:

� mpt: the average forecast;
� ppt: the standard deviation.

Note that the reliability of mpt and spt depends on the
cardinality of the sample data set for past time buckets and
products. Then, the forecast (1), indicating the stock of a spare part
p that must be available in order to satisfy the demand in a bucket t

can be modelled as

f pt ¼ l pmpt þ k ps pt (2)

where apt = lpmpt and spt = kpspt.
The quantity lp is the frequency factor. It is calculated by

analyzing historical data occurrences in order to take into account
the regularity of demand; differently from sp, lp does not depend
on how the magnitude of the samples is spread, but on the
regularity of the occurrence of spare part demand over time. As an
example, if a product p was ordered in all the past time buckets
considered, then we obtain lp = 1; on the other hand, if in the
historical data we found an order item in a single past bucket, even
if for a large quantity, then lp will be close to zero.

The quantity kp is called safety factor and is used as a standard
deviation multiplier for tuning the safety level as a function of the
product; the safety factor must be fixed so that

0 � k p � kmax
p

being kmax
p the value required to avoid out-of-stocks having a

probability pp selected for each product p (e.g., for pp = 34% we
must fix kmax

p ¼ 1; for pp = 5%, kmax
p ¼ 2; for pp = 0.03%, kmax

p ¼ 3).
Solving the ISMOP corresponds to determine the values of the

safety factors kp 8p 2 P, which are the decision variables for the
problem. The condition on the quality solution for the ISMOP is
imposed by means of a lower bound for the level of service

provided to customers. In particular, the set of products P is
partitioned into a set of G clusters, i.e., P ¼

S
g 2GPg , Ph \ Pg = 1

8h 6¼ g, so that each cluster Pg includes products whose orders
must be served with a same level of service. Then, a lower bound
for the level of service, LoSg 8g 2 G, is specified as the minimum
average service level that must be guaranteed for the products in
Pg. The measure of the service level that we considered in this
work is the FFRV (in the following FFR). FFR can be evaluated for
past demand over a time interval, modelling the customer
satisfaction as the ratio between the number of order items that
were dispatched and the total number of order items included in
the customer orders. We can express the minimum acceptability
conditions on the level of service for each past time bucket t and

each product cluster g as

FFRgt � LoSg 8 g 2G; t ¼ �2T; . . . ;0 (3)

where we compute the FFRgt as

FFRgt ¼
1

jPg j
X

p2 Pg

FFR pt 8 g 2G; t ¼ �2T; . . . ;0 (4)

being FFRpt the FFR for product p in the bucket t obtained as

FFR pt ¼
E pt

O pt
8 p2 P; t ¼ �2T; . . . ;0 (5)

Note that in (5) Ept and Opt are respectively the number of order
items dispatched and the total number of ordered items for
product p in any of the past time bucket t. Ept has been estimated
through a forecast of historical data. The optimization objective of
the ISMOP corresponds to minimize the total stock cost (TSC) for
the forecasted plan. In particular, Cp is given for each p 2 P and TSC
is computed for each time bucket t in the optimization horizon on
the basis of the forecasts fpt yielded by the forecast model as

TSCt ¼
X

p2 P

C p f pt ; t ¼ 1; . . . ; T (6)

The optimal safety factors k�p can be obtained from the minimiza-
tion of (6) provided that a suitable computation model is used for
accounting the quality service conditions (3) in forecasting, i.e., for
the time buckets included in the optimization horizon.

3. The approach

The approach here proposed for the ISMOP is based on the
definition and solution of a stochastic linear programming problem.
Stochastic linear programming is an optimization approach used to
solve linear problems when the assumption that all the model
parameters are known for a certainty does not hold true [6].
Differently from the deterministic linear programming problem, in a
SLPP some of the involved parameters are not constants but
randomly generated, so that the objective function and/or some of
the constraints are not deterministically computed or verified. In the
following we will illustrate how we model the ISMOP as a SLPP.

The objective of the SLPP in this case is the minimization of the
total stocking cost needed to satisfy the forecasted demand, so that
the quality of service is guaranteed by imposing a minimum service
level for the clusters of products. The decisions then correspond to
determine the product safety factors kp for p 2 P in each future time
bucket t = 1, . . ., T, that is, to determine the optimal stock quantity fpt

for the products in those buckets. In order to model the conditions on
the quality of service we need to identify a relationship between the
stock quantities fpt and the corresponding FFRpt. This latter index,
computed for historical data as in (5), clearly depends on the ratio
Apt/Qpt between the quantity of product p actually available in a
bucket t, Apt, and the total quantity of product ordered in t, Qpt. If Apt/
Qpt� 1 then any received order item can be dispatched giving
FFRpt = 1, whereas if Apt/Qpt < 1 the FFRpt decreases to zero when Apt

decreases to zero. In any time bucket t in the optimization horizon
we consider an estimation of the FFR, FF̂R ptðA pt=Q ptÞ, setting Apt

equal to the stock quantity to be identified fpt, and modelling the
total order quantity Qpt with a suitable randomly generated Q̂ pt .
Then, we formulate the ISMOP for each time bucket t = 1, . . ., T and
product cluster g 2 G as the following SLPP:

min
X

p2 P

C p f pt (7)

subject to

1

jPg j
X

p2 Pg

FF̂R ptð f pt ; Q̂ ptÞ� LoSg (8)

f pt ¼ lpmpt þ k ps pt 8 p2 Pg (9)

0 � k p � kmax
p 8 p2 Pg (10)
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