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a b s t r a c t

In this paper, we utilize two e-insensitive loss functions to construct a non-convex loss function. Based on
this non-convex loss function, a robust truncated support vector regression (TSVR) is proposed. In order
to solve the TSVR, the concave–convex procedure is used to circumvent this problem though transform-
ing the non-convex problem to a sequence of convex ones. The TSVR owns better robustness to outliers
than the classical support vector regression, which makes the TSVR gain advantages in the generalization
ability and the number of support vector. Finally, the experiments on the synthetic and real-world bench-
mark data sets further confirm the effectiveness of our proposed TSVR.

� 2009 Elsevier Ltd. All rights reserved.

1. Introduction

The support vector machine (SVM) (Burges, 1998; Cristianini &
Shawe-Taylor, 2000; Schölkopf & Smola, 2002; Vapnik, 1995),
which is based on statistical theory and structural risk minimiza-
tion principle, proposed by Vapnik and his group enjoys successful
real-life applications such as classification and regression. As a
state-of-the-art technique, SVM has better generalization ability
compared with other machine learning methods like artificial neu-
ral network (ANN). However, for SVM, the computational complex-
ity is expensive in the training stage, which needs to solve a
quadratic programming problem, and its solution only depends
on a small subset of the training samples, viz. the set of support
vectors. For classification problem, SVM has already obtained good
results, and in the regression domain, there exists a corresponding
machine called support vector regression (SVR), whose training
computational cost is as expensive as SVM’s, i.e., O(N3), where N
is the ensemble number of the training samples. To circumvent
their problems, so far, many convex optimization algorithms, such
as Chunking (Osuna, Freund, & Girosi, 1999), SMO (Platt, 1999;
Shevade, Keerthi, Bhattacharyya, & Murthy, 2000), SVMlight
(Joachims, 1999), SVMTorch (Collobert & Bengio, 2001), and soft-
ware LIBSVM (Chang & Lin, 2001), have been proposed to acceler-
ate the training speed by optimizing a small subset of the variables
in the dual during the iteration procedure.

Generally, most people study the SVM from a geometrical
viewpoint, i.e., SVM is a large margin based classifier for binary clas-
sification. It seeks a linear hyperplane to separate the training sam-
ples as largely as possible in the high dimensional feature space.

Thereby, the large margin helps SVM improve its generalization
ability. This view is familiar to us. However, there exists another
viewpoint to explain SVM, that is, it fits the regularization learning
framework of loss + penalty with the hinge loss (Evgeniou, Pontil, &
Poggio, 2000; Wahba, 1999). In the regularization learning frame-
work, the loss function is utilized to minimize the empirical error
so that the resultant model can fit the training samples well. The
penalty term is used to regularize the resulting model so as to es-
cape from overfitting. Actually, SVR can be also interpreted from
the regularization learning framework. For SVR, the penalty term,
which is used to control the model complexity, is the same as that
of SVM, while SVR selects the e-insensitive function to construct
the loss term as a surrogate of the hinge loss for SVM. If we distin-
guish between SVM and SVR only from this point-of-view namely
loss + penalty, then we can understand that the loss terms lead to
their differences. Practically, apart from the hinge loss in SVM and
the e-insensitive loss in SVR, the loss functions play a significant part
in supervised learning, which construct different optimization
objectives so as to discriminate different learning algorithms, for
example, log loss for logistic regression, exponential loss for Boost-
ing, least squares loss for ridge regression, and so on. Overall these
loss functions are all convex which own the application and theory
advantages over non-convex ones, because they can be easily used,
efficiently computed, and conveniently analysed. However, non-
convex loss functions have superiority to convex ones in generaliza-
tion performance, robustness and scalability, and they have at-
tracted much attention in recent years. Shen, Tseng, Zhang, and
Wong (2003) firstly proposed w-learning and indicated that non-
convex loss functions yield fast convergence rates to the Bayes limit,
but Steinwart and Scovel (2004) revealed that SVMs can achieve
comparable convergence rates with the hinge loss under a lot of
similar assumptions. Subsequently, Liu, Shen, and Doss (2005), Liu
and Shen (2006) profoundly studied the use of w loss, and Collobert,
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Sinz, Weston, and Bottou (2006) shown that the non-convexity can
provide scalability advantages over convexity. Recently, Wu and Liu
(2007) proposed a robust truncated hinge loss SVM, which is dem-
onstrated to be more robust to outliers and to deliver more accuracy
classifiers. However, these studies only focus on the classification
domain, whereas there are few reports on regression domain.
Hence, inspired by these studies, in our paper, a robust truncated
support vector regression (TSVR) is proposed, which is based on a
truncated e-insensitive loss function. The TSVR cannot only enhance
prediction accuracy but also curtail the number of support vectors
to shorten prediction time in a way through discarding the outliers
existing in the training set. Because the sophisticated convex opti-
mization algorithms are not used to deal with the non-convex opti-
mization problem of the TSVR, thus the concave–convex procedure
(CCCP) (Yuille & Rangarajan, 2003) is employed to transform the
non-convex optimization to a sequence of convex ones, which can
be solved using the sophisticated convex optimization techniques.
Finally, experiments on the synthetic and real-world benchmark
data sets confirm the effectiveness, namely robustness to outliers,
of our proposed TSVR.

In this section, we will introduce the organization of our paper.
In Section 2, the classical SVR is introduced. In the following, we
construct a non-convex loss function. Based on this non-convex
loss function, the truncated SVR is proposed in Section 4. Section
5 gives the convergence and computational complexity of the pro-
posed TSVR. To confirm the effectiveness, we utilize the synthetic
and real-world benchmark data sets to test the TSVR in Section
6. Finally, the conclusions follow.

2. Support vector regression

Considering N pairs of training samples fðxi; diÞgN
i¼1, where

xi 2 Rn is the input variable and di is the corresponding target,
and the e-insensitive loss function, the SVR model can be obtained
through solving the following optimization problem:

min
w;b

1
2
kwk2 þ C

XN

i¼1

ni þ n�i
� �( )

s:t: di � ðw �uðxiÞ þ bÞ 6 eþ n�i
w � uðxiÞ þ b� di 6 eþ ni

n�i ; ni P 0; i ¼ 1; . . . ;N:

ð1Þ

where C is a regulator which is used to control the tradeoff between
the model complexity and training error, and u(�) is usually a non-
linear mapping which is induced by a kernel function. In order to
solve (1), we need to construct a Lagrange function, and from the
Karush–Kuhn–Tucker (KKT) conditions, we can get the following
dual optimization problem:

min
a� ;a

1
2

XN

i;j¼1

a�i � ai
� �

a�j � aj

� �
kðxi; xjÞ

þ e
XN

i¼1

a�i þ ai
� �

�
XN

i¼1

di a�i � ai
� �

s:t:
XN

i¼1

a�i � ai
� �

¼ 0;

0 6 a�i 6 C; 0 6 ai 6 C; i ¼ 1; . . . ;N;

ð2Þ

where k(�, �) is a kernel function which represents the inner product
between two vectors in the high dimensional (even infinite ) feature
space. Usually, k(�, �) can be chosen as Gaussian, polynomial, or MLP.
After solving (2), the following predictor, viz. SVR, can be got

f ðxÞ ¼
X
xi2SV

a�i � ai
� �

kðx; xiÞ þ b; ð3Þ

where SV is the support vectors set.

3. The non-convex loss function

According to the principle of loss + penalty, let e = e1, and then
(1) can be rewritten as

min
w;b

g ¼ 1
2
kwk2 þ C

XN

i¼1

He1 ðjzijÞ
( )

; ð4Þ

where He1 ð�Þ is a e1-insensitive loss function which is illustrated as
Fig. 1, and the e1-insensitive loss function can be written as
He1 ðjzijÞ ¼maxf0; jzij � e1g with zi = di �w�u(xi) � b = di � f(xi). As
we know, the samples with the losses jzijP e1 are regarded as sup-
port vectors, whereas the others are not. As for this point, we can
give an intuitive explanation. Given that the e1-insensitive loss
function is differentiable with a smooth approximation to the small
interval jzij 2 [e1 � d, e1 + d] near the insensitive point, where d is a
small positive constant. Let @g

@w ¼ 0, and then we have

w ¼ �C
XN

i¼1

signðziÞH0e1
ðjzijÞuðxiÞ; ð5Þ

where signðziÞ ¼
1 if zi P 0
�1 if zi < 0

�
. When samples with jzij < e1 lie in

the flat area, they cannot become support vectors because H0e1
ðjzijÞ is

equal to 0. Similarly, samples with jzijP e1 can become support
vectors because of their corresponding derivations being 1. Gener-
ally, outliers own larger jzijs than the normal samples. That’s to
say, outliers are usually viewed as support vectors owing to their
jzijs > e1, which are unreasonable and naturally degrade the general-
ization performance of SVR. Thereby, we must take actions to
discard outliers as support vectors. From the aforementioned fact,
we know that when the samples lie in the flat area, they cannot be-
come support vectors. In addition, outliers usually introduce larger
loss jzijs than the normal samples. Hence, we only need to construct
a loss function which lets outliers lie in the flat area. Following this
line, we combine two e-insensitive loss functions to form a loss
function (illustrated as Fig. 3) as

RðjzijÞ ¼ He1 ðjzijÞ � He2 ðjzijÞ; ð6Þ

where He2 ðjzijÞ is also a e-insensitive loss function (see Fig. 2) with
e2 > e1. If an appropriate e2 is selected, then we can let that outliers
with jzijP e2 locate in the flat area so that they do not become sup-
port vectors, and through discarding outliers, we can improve the
generalization performance, namely prediction accuracy, of SVR
and curtail the number of support vectors. Visually, we can call
R(j zij) the truncated e-insensitive loss function. If He1 ðjzijÞ in (4) is

1ε1ε−

( )
1 iH zε

iz

Fig. 1. e1-Insensitive loss function.
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