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a b s t r a c t

This paper explores an application of support vector regression for adaptive control of an unmanned
aerial vehicle (UAV). Unlike neural networks, support vector regression (SVR) generates global
solutions, because SVR basically solves quadratic programming (QP) problems. With this advantage, the
input–output feedback-linearized inverse dynamic model and the compensation term for the inversion
error are identified off-line, which we call I-SVR (inversion SVR) and C-SVR (compensation SVR),
respectively. In order to compensate for the inversion error and the unexpected uncertainty, an online
adaptation algorithm for the C-SVR is proposed. Then, the stability of the overall error dynamics is
analyzed by the uniformly ultimately bounded property in the nonlinear system theory. In order to
validate the effectiveness of the proposed adaptive controller, numerical simulations are performed on
the UAV model.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Many dynamic systems to be controlled are affected by various
disturbances and uncertain factors. For example, unmanned aerial
vehicles (UAVs),which have received a growing interest for various
military and civilian applications (Giulietti, Pollini, & Innocenti,
2000; Ryan, Zennaro, Howell, Sengupta, & Hedrick, 2004), are
subject to significant wind gusts, vortex effects and time delay
from control signal to control servo. Although precise control of
UAVs is a basic ingredient for many applications, it is not trivial to
obtain an accurate UAV model because of these disturbances and
measurement noise.

In order to design a controller against the uncertainties that
cannot be predicted a priori, black-box identification using ar-
tificial neural networks (ANN) has been extensively studied.
Sanner and Slotine (1992), a direct adaptive tracking control archi-
tecture using Gaussian radial function networks was designed to
adaptively compensate for plant nonlinearities. Talebi, Khorasani,
and Patel (1998) developed a position controller using four dif-
ferent neural network based schemes and revealed the validation
of the proposed controller in the presence of unmodeled dynam-
ics and nonlinearities. Recently, Giulietti et al. (2000) proposed a
controller for a hybrid-electric UAV using neural networks to ap-
proximate a result of an energy optimization for a propulsion sys-
tem and spent less energy than a two-stroke gasoline-powered
UAV. The performance of ANN’s has been validated in a wide range
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of applications (Harmon, Frank, & Joshi, 2005; Kim & Calise, 1997;
Polycarpou & Ioannou, 1992; Shin & Kim, 2006; Yabuta & Yamada,
1991) despite the issues of local minima during gradient descent,
and selection of the ANN architecture.

On the other hand, kernel-based learning methods such as
support vector machine (SVM) or support vector regression (SVR)
transform the original problem into a quadratic programming
(QP) problem whose global solution can be obtained by QP
solvers (Schölkopf, Bartlett, Smola, & Williamson, 1998; Smola
& Schölkopf, 1998). Thus, pattern classification (by SVM) and
regression problems (by SVR) can be solved without the issues
of the local minima. Another advantage of the SVM/SVR is that
its structure is fixed, so the selection of the design parameters
for the SVR is often straightforward. With such advantages, SVM
has found various applications including road profile recognition
for autonomous navigation (Holzapfel, Sofsky, & Neuschaefer-
Rube, 2003) and target recognition from synthetic aperture radar
imaging (Zhao & Principe, 2001).

Compared with the popularity of SVM in many classification
and recognition problems, application of SVR in control systems
is still in an early stage. In Wang, Pi, and Sun (2007), an online
algorithm for an SVR inverse model has been studied. The online
algorithm in Wang et al. (2007) is a training method in the
context of incremental or decremental learning (Cauwenberghs &
Poggio, 2001), rather than an adaptation algorithm performed in
the control loop. In Iplicki (2006) and Xi, Poo, and Chou (2007),
SVR-based techniques were used for obtaining a plant model for
model predictive control (MPC). An off-line trained SVR plant
model is fed to the optimization routine and used for the prediction
of the future states over the lookahead horizon. And Suykens,
Vandewalle, andMoor (2001) proposed a least-squares SVM-based
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optimal controller and validated its performance. However, the
above studies did not consider the nonlinearity or uncertainties
of the plant. Therefore, if the system we want to control changes
significantly, overall performance can degrade.

Unlike the previous SVR-based control research, this study uses
ideas from the input–output feedback linearization in nonlinear
control and then, uses the global property of the solution of the
SVR. Two SVR machines are trained offline using input–output
data from the input–output feedback-linearized system. The first
one called the inversion SVR (I-SVR) is designed for training the
feedback-linearized inverse dynamic model and the second one
called the compensation SVR (C-SVR) is constructed to estimate
the output derivative. However, even though the solution of the
SVR has the global property in the sense of being offline, there, in
practice, exists uncertainty or unknown disturbances that may be
unrepresented in the training data set. In order to to handle the
unexpected nonlinearities or uncertainties, an online adaptation
rule for the C-SVR is designed in an adaptive control framework.

This paper is organized as follows. The SVR algorithm is
reviewed briefly in Section 2. In Section 3, an approach for
combining input–output feedback linearization and C-SVR, and
the online adaptation rule for the SVR are addressed. The overall
stability under the adaptation rule is analyzed using the ultimately
uniformly bounded property in the nonlinear system theory.
Section 4 describes an UAV systemwhose flight test data is used in
this study, and presents the results of the UAV flight control using
the proposed approach. A conclusion is given in Section 5.

2. ϵ-support vector regression

This section briefly reviews the ϵ-SVR algorithm (Schölkopf
et al., 1998; Schölkopf, Burges, & Smola, 1999; Smola & Schölkopf,
1998). Consider the training dataset D = {Xk, Yk}

N
k=1 where Xk

is the kth input data in the input space X ⊆ Rn and Yk is the
corresponding output value in the output space Y ⊆ R.
ϵ-SVR model is trained by the following relationship between

the input and output data points (Vapnik, 1995, 1998):

F(Xk) = ⟨w,Φ(Xk)⟩ + c (1)

where w is a vector in the feature space F ⊆ Rn, Φ(Xk) is a
mapping from the input space X to the feature space F , c is the
bias term and ⟨·, ·⟩ stands for the inner product in F .
ϵ-SVRmodel is based on Vapnik’s ϵ-insensitive loss function for

function approximation (Vapnik, 1995). It is aimed at minimizing
the empirical risk

1
N

N−
i=1

|Yi − F(Xi)|ϵ

with the following ϵ-insensitive model:

|Yi − F(Xi)|ϵ =


0 if |Yi − F(Xi)| ≤ ϵ
|Yi − F(Xi)| − ϵ else. (2)

The optimization problem can be formulated in the primal
space, as the following (Smola & Schölkopf, 1998; Vapnik, 1995)

min
w,c,ξ ,ξ∗

Pϵ =
1
2
‖w‖

2
+ C

N−
i=1


ξi + ξ ∗

i


(3)

subject to the constraintsYi − ⟨w,Φ(Xi)⟩ − c ≤ ϵ + ξi
⟨w,Φ(Xi)⟩ + c − Yi ≤ ϵ + ξ ∗

i
ξi, ξ

∗

i ≥ 0, i = 1, 2, . . . ,N
(4)

where ϵ is the maximum value of tolerable error, ξi’s and ξ ∗

i ’s
are slack variables, ‖ · ‖ is the Euclidean norm, and C is a

regularization parameter that represents a trade-off between the
model complexity and the tolerance to the error larger than ϵ.

The dual form of (3) becomes a quadratic programming(QP)
problem as follows (Smola & Schölkopf, 1998; Vapnik, 1995):

min
η,η∗

Dϵ =
1
2

N−
i=1

N−
j=1

κ(Xi, Xj)(ηi − η∗

i )(ηj − η∗

j )

+ ϵ

N−
i=1

(ηi + η∗

i )−

N−
i=1

Yi(ηi − η∗

i ) (5)

subject to the constraints

0 ≤ ηi, η
∗

i ≤ C,
N−
i=1

(ηi − η∗

i ) = 0, i = 1, . . . ,N (6)

where κ(Xi, Xj) is a kernel function given by κ(Xi, Xj) =

Φ(Xi)
TΦ(Xj) = κij. Motivated by Mercer’s condition, the kernel

function handles the inner product in the feature space and hence
the explicit form of Φ(Xk) does not need to be known (Vapnik,
1995). In this study, the following Gaussian radial basis kernel
function is used

κ(Xi, Xj) = exp


−
(Xi − Xj)

T (Xi − Xj)

σ 2


. (7)

The solution of the QP problem (5) subject to (6) is the optimum
values of ηi’s and η∗

i ’s. The value of c in the model can be
determined by the condition that at the point of the solution
the product between dual variables and constraints has to vanish
(Smola & Schölkopf, 1998). Then one obtains

w =

N−
i=1

(ηi − η∗

i )Φ(Xi),

and the data points corresponding to non-zero values of (ηi − η∗

i )
are called support vectors. When only the support vectors are
considered, the model becomes

F(Xk) =

NSV−
i=1,(i∈SV )

ζiκ(Xk, Xi)+ c (8)

where ζi = ηi − η∗

i , NSV denotes the number of support vectors in
the model. The obtained SVMmodel is sparse in the sense that the
whole training data are represented by the support vectors only
and many of ζi are zero.

The design parameters of ϵ-SVR are the maximum tolerable
error ϵ at the output, the regularization parameter C , the number
of training patterns N and the parameter σ of the kernel function.
Although there is no systematicway of determining optimal values
of these parameters, some effective guidelines can be found in
Cherkassky and Ma (2004).

3. Nonlinear control using feedback linearization and support
vector regression

This section reviews the concept of input–output feedback
linearization in the nonlinear system theory briefly and explains
how to apply support vector regression (SVR) to the feedback-
linearized system.

3.1. Input–output feedback linearization

Consider the following nonlinear dynamic system



https://isiarticles.com/article/25312

