
Signal Processing 88 (2008) 1839–1851

Multichannel blind seismic deconvolution
using dynamic programming$

Alon Heimer, Israel Cohen�

Department of Electrical Engineering, Technion– Israel Institute of Technology, Technion City, Haifa 32000, Israel

Received 14 December 2006; received in revised form 4 December 2007; accepted 20 January 2008

Available online 4 February 2008

Abstract

In this paper, we present an algorithm for multichannel blind deconvolution of seismic signals, which exploits lateral

continuity of earth layers by dynamic programming approach. We assume that reflectors in consecutive channels, related

to distinct layers, form continuous paths across channels. We introduce a quality measure for evaluating the quality

of a continuous path, and iteratively apply dynamic programming to find the best continuous paths. The improved

performance of the proposed algorithm and its robustness to noise, compared to a competitive algorithm, are

demonstrated through simulations and real seismic data examples.

r 2008 Elsevier B.V. All rights reserved.
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1. Introduction

In seismic exploration, a short duration seismic
pulse is transmitted from the surface, reflected from
boundaries between underground earth layers, and
received by an array of sensors on the surface [1].
The received signals, called seismic traces, are
analyzed to extract information about the under-
ground structure of the layers in the explored area
[2,3]. Pre-processing is applied to the raw data in
order to increase the signal-to-noise ratio (SNR)
and attenuate surface waves that are unrelated to
the underground structure. Subsequently, the traces

can be modeled under simplifying assumptions as
noisy outcomes of convolutions between reflectivity
sequences (channels) and an unknown wavelet. The
objective of multichannel blind seismic deconvolu-
tion is to estimate both the wavelet and the
reflectivity sequences from the measured traces.

Single-channel blind deconvolution is generally
an ill-posed problem, and requires some a priori
information about the channels or the wavelet. The
reflectivity sequence is often modeled as a Bernoulli–
Gaussian random sequence, and second-order
statistics may be used to partially reconstruct the
input signal. Several methods based on high-order
statistics have been developed [4,5], which require
very long data to properly estimate the output
statistics. Alternatively, the wavelet can be modeled
as an autoregressive moving-average (ARMA)
process, and a maximum likelihood estimator for
the reflectivity can be derived [6].
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Multichannel blind deconvolution (see [7] and
references therein, [8,9]) is often more advantageous
and more robust than single-channel blind decon-
volution. Sparsity of the reflectivity sequences may
be used to cope with the ill-posed nature of the basic
blind deconvolution problem [10,11], and to im-
prove the performance of non-blind deconvolution
methods [12]. Channel sparsity has been used in
[10], together with an assumption of short wavelet,
to formulate an efficient channel estimation
method suitable for relatively short traces (see also
[13]). Lateral continuity of the reflectors across
channels is also used to further improve the channel
estimates. Idier and Goussard [14] model the two-
dimensional structure of the underground reflectiv-
ity as a Markov–Bernoulli random field, and impose
lateral continuity to generate deconvolution results
that are far superior to those obtainable by single-
channel deconvolution methods. However, their
estimator of the two-dimensional reflectivity pattern
is suboptimal, since the dependency between col-
umns is treated locally, i.e., each column of the
reflectivity is estimated separately, under prior
distributions given by the previous column whose
estimate is held fixed.

In this paper, lateral continuity of reflectors
across channels is combined with the blind decon-
volution algorithm of Kaaresen and Taxt [10]. We
employ dynamic programming [15,16] to find the
shortest continuous paths of reflectors across
channels, and develop an improved multichannel
blind deconvolution algorithm for seismic signals,
which exploits the lateral continuity of earth layers.
Rather than measuring the increase in the fit to the
data each single reflector yields, versus the decrease
in sparsity of the channel estimates, we measure the
increase in the fit to the data obtained by a complete
continuous path of reflectors, versus the decrease in
the sparsity of paths. This approach is an attempt
to look at the data as a whole, and account for
dependency between all columns in the data, and
not only adjacent ones. The improved performance
of the proposed algorithm and its robustness to
noise, compared to the blind deconvolution algo-
rithm of Kaaresen and Taxt, are demonstrated
by using simulated and real seismic data examples.
The rest of this paper is organized as follows: In
Section 2, we describe the signal model and briefly
review the blind deconvolution algorithm presented
in [10]. In Section 3, we describe a dynamic
programming method for finding the shortest
continuous path in an image. In Section 4, we

introduce a multichannel blind deconvolution algo-
rithm, which exploits the continuity of earth layers
and utilizes the dynamic programming approach.
In Section 5, the performance of the proposed
algorithm is demonstrated on simulated and real
seismic data, and compared to an existing algo-
rithm. Finally, in Section 6 we discuss the additional
complexity of the proposed algorithm.

2. Signal model and basic blind deconvolution process

2.1. Signal model

We assume M received signals (traces), each
generated by a single input signal h½n� passing
through a channel xðmÞ½n� and corrupted by additive
uncorrelated noise eðmÞ½n�. The output signal of
channel m can be written as

zðmÞ½n� ¼
XK�1
k¼0

h½k�xðmÞ½n� k� þ eðmÞ½n�

for m ¼ 1; 2; . . . ;M ; n ¼ 1; 2; . . . ;N. (1)

The following assumptions are made for the wavelet
h and the channels:

(1) All channels are excited by the same wavelet h.
(2) The wavelet h has a finite support of length K,

which is shorter than the channel.
(3) Each channel is sparse, i.e., the number of non-

zero elements (reflectors) in a channel is small
relative to the channel’s length.

(4) The dependency between different channels is
modeled as follows. Let P ¼ ðn1; n2; . . . ; nMÞ be a
vector of M integer line numbers such that n1 is
uniformly distributed in the range ½1;N�, and
nmjnm�1 is uniformly distributed in the range
½nm�1 � 1; nm�1 þ 1� for m ¼ 2; 3; . . . ;M. We call
the vector P the ‘‘location vector of a single
layer’’. Let eaðPÞ ¼ ðeaP

1 ; eaP
2 ; . . . ; eaP

M Þ denote a
vector such that eaP

1 is normally distributed with
zero mean and standard deviation sa, and such
that eaP

mjeaP
m�1 is normally distributed with mean

reaP
m�1 and standard deviation sa

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2
p

for
some constant r close to 1 and m ¼ 2; 3; . . . ;M.
This is a Markov model for the amplitudes of
the reflectors along the layer with locations P.
The two-dimensional reflectivity pattern is the
stacking of the M channels as columns in
an NnM matrix X. Let fP1;P2; . . . ;PLg be
the location vectors of L single layers and
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