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a b s t r a c t

The aim of this paper is to extend the dynamic programming (DP) approach tomulti-model
optimal control problems (OCPs).We deal with robust optimization ofmulti-model control
systems and are particularly interested in the Hamilton–Jacobi–Bellman (HJB) equation for
the above class of problems. In this paper, we study a variant of the HJB for multi-model
OCPs and examine the natural relationship between the Bellman DP techniques and the
Robust Maximum Principle (MP). Moreover, we describe how to carry out the practical
calculations in the context of multi-model LQ-problems and derive the associated Riccati-
type equation.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

The theory of OCPs governed by ordinary differential equations has been well established since the middle of the 20th
century; see e.g., [1–6] and the references therein. For a classical OCP, the main tools toward the construction of optimal
trajectories, and then optimal synthesis, are the celebrated PontryaginMP and the BellmanDP. Recently robust optimization
problems for multi-model control systems have attracted a lot of attention; thus both theoretical results and applications
were developed, (see [7–11]). OCPs for multi-model dynamical systems arise in the control of mechanical multibody
systems, electrical circuits and heterogeneous systems,where differentmodels are coupled together. Themajority of applied
OCPs are problems with incomplete information on the model structure or parameters. The multi-model control systems
provide useful theoretical models for some classes of dynamical systems with the above-mentioned types of uncertainties.
In this case one of the most efficient approaches to the optimal design of such systems is the robust optimization technique.
Optimal robust control strategies based on the minimax algorithms have found a wide use in the design of complex control
systems. Robust MP proposed by Boltyanski and Poznyak (see e.g., [7–11]) is the basic analytical result for studying OCPs
with multi-model controlled plants. On the other hand, the Bellman DP techniques are not far enough advanced for multi-
model OCPs.
The purpose of this paper is to apply the classic DP techniques to a class of multi-model OCPs. First, we verify the Bellman

principle of optimality for the class of problems under consideration. Second, we derive a (robust) version of the HJB equation.
It should be stressed that our main result deals with a finite parametric set involved into a model description. We also apply
the HJB equation to amulti-model LQ-problem (see [9,10]) and derive a parametric Riccati equation for the linear-quadratic
case. Moreover, the obtained theoretical facts are considered in comparison with the corresponding theorem resulting from
the application of the Robust MP to multi-model LQ-problems [10]. In such a manner we establish the natural relationship
between DP and the Robust MP for the given class of LQ-problems (see e.g., [12]).
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The remainder of our paper is organized as follows. Section 2 contains a problem formulation, some basic concepts
and preliminary results. Section 3 is devoted to the main result of this paper, namely, to a variant of the HJB equation
for multi-model OCPs. Moreover, we also deal with the corresponding verification techniques. In Section 4 we apply our
theoretical results to the multi-model linear quadratic problems and deduce a Riccati-formalism similar to the classic
LQ-theory. Section 5 summarizes the paper.

2. Problem formulation and preliminary results

Consider the following initial-value problem for a multi-model control system

ẋ(t) = f α(t, x(t), u(t)) a.e. on [0, tf ],
x(0) = x0,

(1)

where f α : [0, tf ]×Rn×Rm → Rn for everyα froma finite parametric setA, u(t) ∈ U and x0 ∈ Rn is a fixed initial state. Note
that parameter α indicates the corresponding ‘‘model’’ (or ‘‘realization’’) of the multi-model system under consideration
(see [7–10]). We assume that U is a compact subset of Rm and introduce the set of admissible control functions

U := {u(·) ∈ L∞m ([0, tf ]) : u(t) ∈ U a.e. on [0, tf ]}.
Here L∞m ([0, tf ]) is the standard Lebesgue space of (bounded) measurable control functions u : [0, tf ] → Rm such that
ess supt∈[0,tf ] ‖u(t)‖Rm < ∞. In addition, we assume that for each α ∈ A, u(·) ∈ U the realized initial-value problem (1)
has a unique absolutely continuous solution xα,u(·). For some constructive existence and uniqueness conditions see e.g., [4,
6]. Let u(·) be an admissible control function. This control gives rise to the complete dynamic of the given multi-model
system (1), and we can define the (n× |A|)-dimensional ‘‘state vector’’ of system (1)

Xu(t) :=
(
xα1,u(t), . . . , xα|A|,u(t)

)
α∈A

, t ∈ [0, tf ].

In a similar way we consider a ‘‘trajectory’’ of system (1) as an absolutely continuous (n× |A|)-dimensional function Xu(·).
In the following, we also will use the following notation

F(t, X, u) :=
(
f α1(t, x, u), . . . , f α|A|(t, x, u)

)
α∈A

,

h(u(·), xα,u(·)) :=
∫ tf

0
f0(t, xα,u(t), u(t))dt,

where f0 : R×Rn×Rm → R is a continuous function (the integrand of the cost functional). Clearly, functional h(u(·), xα,u(·))
is associated with the corresponding realized model from (1). If we assume that the realized value of the parameter α is
unknown, then the worst cost (highest cost) can be easily defined as

J(u(·)) := max
α∈A

h(u(·), xα,u(·)).

Note that the ‘‘common’’ cost functional J depends only on the given admissible control u(·). Let us now formulate the robust
(minimax) OCP for a multi-model control system

minimize J(u(·))
subject to (1), α ∈ A, u(·) ∈ U.

(2)

A pair (u(·), Xu(·)), where u(·) ∈ U, is called an admissible process for (2). Note that we consider admissible processes
defined on the (finite) time-interval [0, tf ].

Remark 1. Roughly speaking, in the context of problem (2) we are interested in a control strategy which provides a ’’good’’
behavior for all systems from the given collection of models (1) even in the ‘‘worst’’ cost case. The resulting control strategy
is applied to every α-model from (1) simultaneously. A solution of (2) guarantees an optimal robust behavior of the
corresponding multi-model system in the sense of the above cost functional J . Note that one can theoretically consider
a control design determined by the following optimization procedure: ‘‘maximizeminu(·)∈U h(u(·), xα,u(·)) subject to (1),
α ∈ A, u(·) ∈ U’’. Evidently, a solution to this last (maximin) OCP cannot be interpreted as a robust optimization in the
framework of the above-mentioned ‘‘worst case’’. Moreover, a control generated by this maximin optimization procedure
possesses (in general) the optimality property only for some models from (1). Therefore, a simultaneously application of
the above maximin-control to all α-models from (1) (for all α ∈ A) does not lead to an adequate optimal dynamics for all
systems from the collection (1).

Multi-model OCPs of the Bolza-type have been studied in [10]. Let us examine the Bolza cost functional associated with
system (1)

h̃(u(·), xα,u(·)) := φ(xα,u(tf ))+
∫ tf

0
f̃0(t, xα,u(t), u(t))dt,

where φ : Rn → R is a continuously differentiable function (a smooth terminal term) and f̃0 is a continuous function. Note
that we deal here with a classical Bolza functional h̃. The smooth function φ introduced above characterizes the possible
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