

Fuzzy Sets and Systems 119 (2001) 87-95

www.elsevier.com/locate/fss

A differential equation approach to fuzzy vector optimization problems and sensitivity analysis

Fatma M Ali

Department of Mathematics, Faculty of Education, Ain Shams University, Roxy, Cairo, Egypt Received November 1997; received in revised form December 1998

Abstract

The first objective of the analysis presented in this paper is to extend the technique while using differential equations approach for solving fuzzy non-linear programming problem in solving vector optimization problems with fuzzy parameters (VOP-FP). This technique is based mainly on using differential equations approach, which is very effective in finding many local α-Pareto optimal solutions, where the (VOP-FP) is transformed to fuzzy nonlinear autonomous system of differential equations and the relation between the critical points of differential system and local α-Pareto optimal solutions of original optimization problem is proved.

The second objective of the analysis presented in this paper is to obtain sensitivity information for (VOP-FP) by using the technique of trajectory continuation. © 2001 Elsevier Science B.V. All rights reserved.

MSC: 90C27; 90C30; 90C31 and 90C70

Keywords: Vector optimization problems; Differential equation; α-Pareto optimal solutions

1. Introduction

A great deal of work has been done in the field of fuzzy vector optimization problems and sensitivity analysis. From the recent work in this direction, let us mention [2-14]. In [12] Sakawa and Yano presented an interactive decision-making method for multi-objective nonlinear programming problems with fuzzy parameters. In that work, the fuzzy parameters have been characterized by fuzzy numbers and the concept of α-Pareto optimality has been introduced. From the earlier work in this direction by using differential equation approach [10], we presented a technique for solving multi-objective nonlinear programming problems [5], then we extended this result for solving fuzzy nonlinear programming problems [6]. Also, we presented sensitivity analysis for parametric vector optimization problems [7]. In this paper, we shall be concerned with differential equation approach for solving vector optimization problems with fuzzy parameters (VOP-FP) and sensitivity information. This approach is very effective in finding many local α -Pareto optimal solutions.

The paper is organized as follows. In Section 2 we formulate the fuzzy vector optimization problem involving fuzzy parameters in the objective functions. In Section 3, the nonlinear autonomous differential system (Fundamental Equations) for solving (VOP-FP) is introduced. Also, the relation between the critical points

0165-0114/01/\$ - see front matter © 2001 Elsevier Science B.V. All rights reserved. PII: S0165-0114(99)00105-0

of the differential system which is asymptotically stable and local α -Pareto optimal solutions of the original (VOP-FP) is presented. Finally, in Section 4 a general formula for sensitivity information is also presented. This work is based mainly on the idea of autonomous system of differential equations, by using the technique of trajectory continuation [9,11,14].

2. Problem formulation

In this paper, we consider the following vector optimization problems involving fuzzy parameters in the objective functions in the form:

(VOP-FP): min
$$(f_1(X, \lambda_1), f_2(X, \lambda_2), ..., f_m(X, \lambda_m))$$

s.t. $X \in M = \{X \in \mathbb{R}^n : G(X) \leq 0\},$ (2.1)
 $G = (g_1, g_2, ..., g_r)$

where \Re^n is an *n*-dimensional Euclidean space, $f_i(x, \lambda_i)$, i=1,2,...,m and $g_j(X)$, j=1,2,...,r possess continuous partial derivatives, where $\lambda_i = (\lambda_{i1}, \lambda_{i2},...,\lambda_{ip_i})$ fuzzy parameters involved in the objective functions. Here the fuzzy parameters are assumed to be characterized by fuzzy numbers as introduced in [2,3,12], for this, a membership function $\mu_{\lambda_{il}}(\lambda)$, $(i=1,2,...,m,\ l=1,2,...,p_i)$ is defined for a real fuzzy number λ_{ip_i} , where λ_{ip_i} is a convex continuous fuzzy subset of the real line [12]. For simplicity in the notation, we define the following vectors:

$$\lambda = (\lambda_1, \lambda_2, \dots, \lambda_p), \quad \lambda = (\lambda_1, \lambda_2, \dots, \lambda_p), \quad p \leq n.$$

Definition 2.1. The α -level set of as the number λ_{il} , $(i=1,2,\ldots,m,\ l=1,2,\ldots,p_i)$ is defined ordinary set $L_{\alpha}(\lambda)$ for which the degree of their membership functions exceed the level α ; $L_{\alpha}(\lambda) = \{\lambda: \ \mu_{\lambda_{il}}(\lambda_{il}) \geqslant \alpha \ (i=1,2,\ldots,m,\ l=1,2,\ldots,p_i)\}$. For a certain degree α , problem (1) can be formulated as the following non-fuzzy α -VOP, where

(\alpha-VOP): min
$$(f_1(X, \lambda_1), f_2(X, \lambda_2), ..., f_m(X, \lambda_m))$$

 $X \in M,$
 $\lambda \in L_{\alpha}(\lambda),$
s.t. $M = \{X \in \Re^n: g_j(X) \leq 0, \quad j = 1, 2, ..., r\},$
 $L_{\alpha}(\lambda) = \{\lambda: \mu_{\lambda_{il}}(\lambda) \geq \alpha, \quad i = 1, 2, ..., m, \ l = 1, 2, ..., p_i\}.$ (2.2)

Definition 2.2. $X^* \in M$ is said to be α -Pareto optimal solution of $(\alpha$ -VOP) iff there does not exist another $(X, \lambda) \in M \times L_{\alpha}(\lambda)$ such that $f_i(X, \lambda_i) \leq f_i(X^*, \lambda_i^*)$, i = 1, 2, ..., m with strict inequality holding for at least one i, where the corresponding values of parameter λ^* are called α -level optimal parameters and \times denotes the Cartesian product.

Definition 2.3. $X^* \in M$ is said to be α -Pareto optimal solution of $(\alpha$ -VOP) iff there does not exist another $(X,\lambda) \in M \times L_{\alpha}(\lambda) \cap N(X^*,\lambda^*;r)$ such that $f_i(X,\lambda_i) \leqslant f_i(X^*,\lambda_i^*)$, $i=1,2,\ldots,m$ with strict inequality holding for at least one i, where the corresponding values of parameter λ^* are called α -level optimal locally parameters and $N(X^*,\lambda^*;r)$ denotes the neighbourhood of (X^*,λ^*) with radius r.

دريافت فورى ب متن كامل مقاله

ISIArticles مرجع مقالات تخصصی ایران

- ✔ امكان دانلود نسخه تمام متن مقالات انگليسي
 - ✓ امكان دانلود نسخه ترجمه شده مقالات
 - ✓ پذیرش سفارش ترجمه تخصصی
- ✓ امکان جستجو در آرشیو جامعی از صدها موضوع و هزاران مقاله
 - ✓ امكان دانلود رايگان ۲ صفحه اول هر مقاله
 - ✔ امکان پرداخت اینترنتی با کلیه کارت های عضو شتاب
 - ✓ دانلود فوری مقاله پس از پرداخت آنلاین
- ✓ پشتیبانی کامل خرید با بهره مندی از سیستم هوشمند رهگیری سفارشات