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Robust PSS design by probabilistic eigenvalue sensitivity analysis
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Abstract

When a wide range of system operation is taken into account for power system dynamic studies, probabilistic eigenvalue
analysis efficiently provides the statistical distributions of concerned eigenvalues. Under the assumption of normal distribution,
each eigenvalue can be described by its expectation and variance. To enhance system damping under multi-operating conditions
by power system stabilizers (PSSs), effects of PSSs on both eigenvalue expectation and variance should be investigated. In this
paper, the conventional eigenvalue sensitivity analysis has been extended to probabilistic environment. Eigenvalue sensitivities for
both expectation and variance are determined to form two types of probabilistic sensitivity indices (PSIs). Robust PSS locations
are selected by one type of PSI, PSS parameters are tuned by the probabilistic sensitivity analysis using another type of PSI.
© 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

To improve system dynamic damping by PSSs, many
indices and techniques have been proposed for PSS site
selection and parameter optimization. A comparative
study was presented in [1] and the most popular indices
for PSS locations were identified as the residue method
[2] and the damping torque analysis. Relationships
among different indices were discussed under special
conditions and the computation precision was also
compared [1]. Modal analysis [3], damping torque ap-
proach [4] and the eigenvalue sensitivity analysis [3–5]
have been commonly employed for PSS design. A
coordinated PSS design approach was presented based
on the reduced characteristic equation [6], and the PSS
parameters can be ‘directly’ calculated from the desired
eigenvalue assignments. This kind of ‘direct’ approach
was also employed in [7,8].

However, these indices or techniques [1–8] can be
regarded as deterministic approaches with constant sys-
tem parameters and a particular load level. If different
operating conditions are considered, the same proce-
dure has to be executed repeatedly and the computing
time rapidly increases. Variations in parameters and

system operating conditions can be treated by the prob-
abilistic such that the algorithm complexity and compu-
tation requirement are independent of the selected
sample number.

The probabilistic approach was firstly used for power
system dynamic studies in 1978 [9]. The probabilistic
property of an eigenvalue was determined from the
known statistical attributes of system parameters, such
as the rotor angle and mechanical damping. Based on
operating curves of nodal injections, multi-operating
conditions of a power system were considered in [10].
With nodal voltages determined by stochastic load flow
calculation, the probabilistic distribution of each eigen-
value was obtained from the probabilistic attributes of
nodal voltages. Under normal distribution, the random
property of an eigenvalue is described by its expectation
and variance.

Considering multi-operating conditions in this paper,
the probabilistic approach is applied to robust PSS
design. Taking account the statistical nature of eigen-
values, two types of extended probabilistic sensitivity
indices are developed for PSS site selection and parame-
ter adjustment respectively. Initial values of PSS gains
and time constants are determined by probabilistic
eigenvalue sensitivity analysis. All PSS parameters are
tuned by using a PSI matrix.* Corresponding author.
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2. Probabilistic eigenvalue analysis

Under multi-operating environment, nodal powers,
nodal voltages and system eigenvalues are all regarded
as random variables and expressed by their expecta-
tions and variances with the assumption of normal
distribution. In this study, system operating samples are
created from different standardized daily operating
curves of nodal powers and PV voltages, from which
expectations and covariances of nodal injections are
obtained. By means of the probabilistic load flow calcu-
lation, expectations and covariances of nodal voltages
are computed.

To determine the probabilistic attributes of eigenval-
ues, a particular complex eigenvalue �k can be analyti-
cally expressed as an nonlinear function of the nodal
voltage vector V as:

�k=Gk(V) (1)

In a power system of N nodes, the voltage vector
contains 2N real components as: V= [V1,V2,...,V2N ]T.
As stated in [10,11], eigenvalue expectations are ob-
tained from voltage expectations, which is similar to
common deterministic eigenvalue analysis. From the
linearised expression of (1) as:
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the covariance between eigenvalues �m and �n is derived
by:
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In (2) and (3), the expectation operator is expressed
as (.) or E(.). CVi, j

stands for the nodal voltage covari-
ance between Vi and Vj, i.e. CVi, j

=�Vi�Vj. (3) can also
be written in matrix form as (4) with J� denoting the
first order eigenvalue sensitivity matrix:

C�=J�CVJ�
T (4)

Both C�and CV are symmetrical matrices. Diagonal
elements of matrix C� are the variances of eigenvalues,
and the off-diagonal elements are covariances between
eigenvalues. Therefore, the covariances of eigenvalues
are determined from voltage covariances using the first
order eigenvalue derivatives.

For a particular eigenvalue �k=�k+ j�k, the real
part �k with expectation �̄k and standard deviation ��k

(square root of variance) will distribute within {�̄k−
4��k

,�̄k+4��k
} with the probability 0.99993 that is very

close to unity. The acceptable coefficient value of ��k

can be selected from the range of 3 to 4 [10,13], 4 is
used in this paper. To ensure the stability of �k, its
distribution range {�̄k−4��k

,�̄k+4��k
} should be lo-

cated on the left-hand side on the complex plane, which

can also be represented by the upper limit � �k or a
standardized expectation �k* as:

� �k=�k+4��k
�0 (5a)

�k*= −�k/��k
�4 (5b)

Therefore, � �k and �k* can be regarded as two extended
damping coefficients from which the robust stability of
�k can be estimated.

A damping ratio defined as [10]:

�k= −�k/��k
2+�k

2 (6)

should have positive value. Similarly to � �k and �k* in
(5), two extended damping ratios may be determined as
(7) from the expectation �kand standard deviation ��k

:

� �k=�k−4��k
(7a)

�k*= (�k−�c)/��k
(7b)

To ensure the system dynamic performance, � �k should
not be less than a value �C, i.e. � �k��C, or �k*�4. In
this study, �C=0.1 [10].

3. Probabilistic sensitivity indices (PSIs)

Since the probabilistic nature of an eigenvalue is
described by its expectation and variance, the proba-
bilistic eigenvalue sensitivity will be comprised of the
expectation sensitivity and the variance sensitivity. The
sensitivity of an eigenvalue expectation can be com-
puted similarly to that in conventional deterministic
condition using:
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where A is the system matrix. Wk and Uk are respec-
tively the left and right eigenvectors of eigenvalue �k

with Wk
TUk=1. �i stands for a parameter, such as a

nodal voltage or a PSS parameter.
The sensitivity of an eigenvalue variance is derived

from (3) and expressed in general as:
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where Km stands for m-th PSS parameter. With �k and
�k in (9) denoting �k or �k for eigenvalue �k=�k+ j�k,
C�k,�k

in the left hand side of (9) may stand for variance
C�k,�k

, C�k,�k
or C�k,�k

. Considering ��k

2 =C�k,�k
, the

sensitivity of standard deviation is simply:
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Sensitivities of � �k and �k* in (5) can be regarded as
probabilistic sensitivity indices for damping represented
by S ��k

and S�k
* respectively as:
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