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a b s t r a c t

Twin support vector regression (TSVR) is a new regression algorithm, which aims at finding �-insensitive
up- and down-bound functions for the training points. In order to do so, one needs to resolve a pair of
smaller-sized quadratic programming problems (QPPs) rather than a single large one in a classical
SVR. However, the same penalties are given to the samples in TSVR. In fact, samples in the different posi-
tions have different effects on the bound function. Then, we propose a weighted TSVR in this paper,
where samples in the different positions are proposed to give different penalties. The final regressor
can avoid the over-fitting problem to a certain extent and yield great generalization ability. Numerical
experiments on one artificial dataset and nine benchmark datasets demonstrate the feasibility and valid-
ity of our proposed algorithm.

� 2012 Elsevier B.V. All rights reserved.

1. Introduction

Support vector machine (SVM), motivated by the Vapnik–
Chervonenkis (VC) dimensional theory and the statistical learning
theory [15], is a promising technique. Many papers exploiting it
made the state of the art and one of the most used classifiers. Com-
pared with other machine learning approaches like artificial neural
networks [14], SVM has many advantages. First, SVM solves a QPP,
assuring that once an optimal solution is obtained, it is the unique
(global) solution. Second, SVM derives its sparse and robust solu-
tion by maximizing the margin between the two classes. Third,
SVM implements the structural risk minimization principle rather
than the empirical risk minimization principle, which minimizes
the upper bound of the generalization error. SVM has been success-
fully applied in various aspects ranging from remote sensing image
classification [11], text classification [18] to business prediction
[10].

However, one of the main challenges for the standard SVM is
the high computational complexity. The computational complexity
of the SVM is n3, where n is the total size of training data. In order
to improve the computational speed of SVM, Jayadeva et al. [5]
proposed a twin support vector machine (TSVM) for binary data
classification in the spirit of the proximal SVM [2,4,3]. TSVM gen-
erates two nonparallel hyper-planes by solving two smaller-sized
QPPs such that each hyper-plane is closer to one class and as far
as possible from the other. The strategy of solving two smaller-
sized QPPs, rather than a single large one, makes the learning

speed of TSVM approximately four times faster than that of the
standard SVM. At present, TSVM has become one of the popular
methods because of its low computational complexity. Many
variants of TSVM have been proposed by Peng [12], Kumar and
Gopal [7], Jayadeva et al. [6], Khemchandani et al. [9]. Certainly,
the above algorithms are suitable to the classification problems.
As for the regression problem, Peng [13] proposed an efficient
TSVR.

In TSVR, the same penalties are given to the samples. However,
as samples locate in the different positions, it is more reasonable to
give different penalties to them. Inspired by the above studies, we
introduce two weighted coefficients r1 and r2 [1,19,16] into the
TSVR and propose a weighted TSVR in this paper. By dividing the
whole plane into different parts, we bring different penalties to
the samples depending on their different positions.

The effectiveness of our proposed algorithm is demonstrated by
numerical experiments on one artificial dataset and nine bench-
mark datasets. In the artificial experiment, we preliminarily deter-
mine the range of the penalty parameter r, and it is helpful to the
choice of the parameter r in the following benchmark experi-
ments. While we investigate the distributions of samples. The
experimental results on nine benchmark datasets show that the
weighted TSVR achieves significant performance in comparison
with SVR and TSVR.

The paper is organized as follows. Section 2 outlines the SVR
and TSVR. A weighted TSVR is proposed in Section 3, which in-
cludes both the linear and nonlinear cases. Section 4 performs
experiments on one artificial dataset and nine benchmark datasets
to investigate the effectiveness of the weighted TSVR. The last
section concludes the conclusions.
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2. SVR and TSVR

In this section, we give a brief description of the SVR and TSVR.
Given a training set T = {(x1,y1), (x2,y2), . . . , (xn,yn)}, where xi 2 Rd

and yi 2 R. For the sake of conciseness, let matrix A = (x1,x2, . . . ,xn)
and matrix Y = (y1,y2, . . . ,yn).

2.1. Support vector regression

The nonlinear SVR seeks to find a regression function f(x) = wT/
(x) + b in a high dimensional feature space tolerating the small er-
ror in fitting the given dataset. This can be achieved by utilizing the
�-insensitive loss function that sets an �-insensitive ‘‘tube’’ around
the data, within which errors are discard. The nonlinear SVR can be
obtained by resolving the following QPP:

min
w;b;n;n�

1
2
kwk2 þ c � ðeTnþ eTn�Þ; ð1Þ

s:t: ð/TðAÞwþ ebÞ � Y 6 e�þ n;

Y � ð/TðAÞwþ ebÞ 6 e�þ n�;

n P 0e; n� P 0e;

where c is a parameter chosen a priori, which weights the tradeoff
between the fitting errors and flatness of the regression function, n
and n⁄ are the slack vectors reflecting whether the samples locate
into the �-tube or not, e is the vector of ones of appropriate
dimensions.

By introducing the Lagrangian multiplies a and a⁄, we can
derive the dual problem of the QPP (1) as follows:

max
a;a�2Rn

� 1
2
ða� � aÞT KðA;ATÞða� � aÞ þ YTða� � aÞ þ �eTða� þ aÞ;ð2Þ

s:t: eTða� � aÞ ¼ 0;
0e 6 a;a� 6 ce:

Once the QPP (2) is resolved, we can achieve its solution
að�Þ ¼ a1;a�1;a2;a�2; . . . ;an;a�n

� �
and threshold b, and then obtain

the regression function,

f ðxÞ ¼
Pn
i¼1

a�i � ai
� �

Kðxi; xÞ þ b: ð3Þ

Here, K(xi,x) = (/(xi) � /(x)) represents a kernel function which gives
the dot product in the high dimensional feature space. a and a⁄ are
lagrange multipliers that satisfy aia�i ¼ 0; i ¼ 1;2; . . . ; n. We can
find that the regressor f(x) is only decided by the samples (support
vectors) whose lagrange multipliers ai – 0 or a�i – 0. Moreover,
lagrange multipliers ai; a�i ¼ 0 for most samples. Therefore SVR
owns sparsity.

2.2. Twin support vector regression

In order to improve the computational speed, Peng [13] pro-
posed an efficient TSVM for the regression problem, termed as TSVR.
TSVR generates an �-insensitive down-bound function f1ðxÞ ¼
wT

1xþ b1 and an �-insensitive up-bound function f2ðxÞ ¼ wT
2xþ b2.

TSVR is illustrated in Fig. 1.
The final regressor f(x) is decided by the mean of these two

bound functions, i.e.,

f ðxÞ ¼ 1
2
ðf1ðxÞ þ f2ðxÞÞ ¼

1
2
ðw1 þw2ÞT xþ 1

2
ðb1 þ b2Þ: ð4Þ

TSVR is obtained by solving the following pair of QPPs,

min
w1 ;b1 ;n

1
2
kY � e�1 � ðAw1 þ eb1Þk2 þ c1eTn; ð5Þ

s:t: Y � ðAw1 þ eb1ÞP e�1 � n;

n P 0e;

and

min
w2 ;b2 ;g

1
2
kY þ e�2 � ðAw2 þ eb2Þk2 þ c2eTg; ð6Þ

s:t: ðAw2 þ eb2Þ � Y P e�2 � g;
g P 0e;

where c1, c2, �1 and �2 are parameters chosen a priori, n and g are
slack vectors. By introducing the Lagrangian multipliers a and b,
we can derive their dual problems as follows,

max
a

� 1
2
aT GðGT GÞ�1GTaþ f T GðGT GÞ�1GTa� f Ta; ð7Þ

s:t: 0e 6 a 6 c1e;

and

max
b

� 1
2

bT GðGT GÞ�1GTb� hT GðGT GÞ�1GTbþ hTb; ð8Þ

s:t: 0e 6 b 6 c2e;

where G = [A e], f = Y � e�1, and h = Y + e�2.
Once the dual problems (7) and (8) are solved, we can get [w1 b1]

and [w2 b2] in (4) as follows:

½w1 b1�T ¼ ðGT GÞ�1GTðf � aÞ; ð9Þ
½w2 b2�T ¼ ðGT GÞ�1GTðhþ bÞ: ð10Þ

For the nonlinear case, TSVR resolves the following pair of QPPs:

min
w1 ;b1 ;n

1
2
kY � e�1 � ðKðA;ATÞw1 þ eb1Þk2 þ c1eTn; ð11Þ

s:t: Y � ðKðA;ATÞw1 þ eb1ÞP e�1 � n;

n P 0e;

and

min
w2 ;b2 ;g

1
2
kY þ e�2 � ðKðA;ATÞw2 þ eb2Þk2 þ c2eTg; ð12Þ

s:t: KðA;ATÞw2 þ eb2 � Y P e�2 � g;
g P 0e:

Similarly, we can derive the dual problems of the QPPs (11) and (12)
as follows:

max
a

� 1
2
aT HðHT HÞ�1HTaþ f T HðHT HÞ�1HTa� f Ta; ð13Þ

s:t: 0e 6 a 6 c1e;
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Fig. 1. Illustration of the TSVR.
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