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Abstract

The active set framework of the reduced gradient algorithm is used to develop a direct sensitiv-
ity analysis of linear L1 (least absolute deviations) regression with linear equality and inequality
constraints on the parameters. We investigate the e5ect on the L1 regression estimate of a per-
turbation to the values of the response or predictor variables. For observations with nonzero
residuals, we 8nd intervals for the values of the variables for which the estimate is unchanged.
For observations with zero residuals, we 8nd the change in the estimate due to a small per-
turbation to the variable value. The results provide practical diagnostic formulae. They quantify
some robustness properties of constrained L1 regression and show that it is stable, but not uni-
formly stable. The level of sensitivity to perturbations depends on the degree of collinearity in
the model and, for predictor variables, also on how close the estimate is to being nonunique.
The results are illustrated with numerical simulations on examples including curve 8tting and
derivative estimation using trigonometric series.
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1. Introduction

Consider a linear model y=X�+”, where y is an n×1 response vector corresponding
to the n × p design matrix X of predictor variable values, � is an unknown p × 1
vector of parameters and ” is an n × 1 vector of random errors. For our purposes it
will be convenient to write the model as a system of linear equations yi = xT

i � + �i,
i = 1; : : : ; n, where xT

i is the ith row of X .
In many applications there are additional linear constraints that must be satis8ed

by some or all of the parameters, for example, positivity. In particular, biometric and
econometric models of the form Ey i= E
1 Ex
2

i2 Ex
3
i3 e

�i , with positive E
1, 
2 and 
3, are of this
type after a logarithmic transformation (see p. 444 in Judge et al., 1985). Constrained
regression problems also arise naturally in the important areas of parametric (and
nonparametric) curve and surface 8tting, and in the estimation of solutions of ill-posed
and inverse problems from noisy data (see Wahba, 1990). Here, extra information such
as the value of the solution at some point leads to a linear equality constraint on the
parameters. Extra information such as positivity, monotonicity, concavity or convexity
of the solution leads to a set of linear inequality constraints on the parameters (see
Wahba, 1982 and O’Leary and Rust, 1986). For notational simplicity we will write the
linear equality constraints as xT

i �−yi=0, i∈E={n+1; : : : ; n+nE}, and the inequality
constraints as xT

i � − yi6 0, i∈I = {n+ nE + 1; : : : ; n+ nE + nI}.
In the unconstrained case, it is usual to estimate � using least squares (L2) regression.

For the constrained problem, restricted or constrained least squares regression (as well
as other approaches) have been used (see Knautz, 2000). However, as is well known,
the least squares method is not robust; it is not optimal for error distributions with
long tails and the estimates are overly sensitive to outliers.

Over the past 25 years there has been growing interest in the method of least absolute
deviations or L1 regression as an alternative to least squares regression. For the linear
model with linear constraints above, the L1 regression estimate of � is the solution to
the problem (denoted LL1)

minimize S(�) =
n∑
i=1

|xT
i � − yi|; �∈Rp; (1.1A)

subject to xT
i � − yi = 0; i∈E= {n+ 1; : : : ; n+ nE}; (1.1B)

xT
i � − yi6 0; i∈I = {n+ nE + 1; : : : ; n+ nE + nI}; (1.1C)

where we assume that nE¡p¡n+ nE + nI.
An important advantage of L1 regression over L2 regression is its robustness. For

the unconstrained problem (denoted UL1), it is well known that the L1 regression
estimator can resist a few large errors in the data y. In fact (see Lemma 3.1 or
Bloom8eld and Steiger, 1983), the optimal solution (regression estimate) to UL1 is
completely una5ected by a perturbation of y that maintains the same signs of the
residuals. Bloom8eld and Steiger (1983, Section 2.3) also derived the generalized
inIuence function for L1 regression, which shows its robustness with respect to yi,
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