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Abstract

Conventionally, a radial basis function (RBF) network is constructed by obtaining cluster centers of basis function by maximum likelihood

learning. This paper proposes a novel learning algorithm for the construction of radial basis function using sensitivity analysis. In training,

the number of hidden neurons and the centers of their radial basis functions are determined by the maximization of the output’s sensitivity to

the training data. In classification, the minimal number of such hidden neurons with the maximal sensitivity will be the most generalizable to

unknown data. Our experimental results show that our proposed sensitivity-based RBF classifier outperforms the conventional RBFs and is as

accurate as support vector machine (SVM). Hence, sensitivity analysis is expected to be a new alternative way to the construction of RBF

networks.
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1. Introduction

As one of the most popular neural network models, radial

basis function (RBF) network attracts lots of attentions on

the improvement of its approximate ability as well as the

construction of its architecture. Bishop (1991) concluded

that an RBF network can provide a fast, linear algorithm

capable of representing complex non-linear mappings. Park

and Sandberg (1993) further showed that RBF network can

approximate any regular function. In a statistical sense, the

approximate ability is a special case of statistical consist-

ency. Hence, Xu, Krzyzak, and Yuille (1994) presented

upper bounds for the convergence rates of the approxi-

mation error of RBF networks, and proved constructively

the existence of a consistent estimator point-wise and L2

convergence rates of the best consistent estimator for

RBF networks. Their results can be a guide to optimize the

construction of an RBF network, which includes

the determination of the total number of radial basis

functions along with their centers and widths.

There are three ways to construct an RBF network,

namely, clustering, pruning and critical vector learning.

Bishop (1991) and Xu (1998) follow the clustering

method, in which the training examples are grouped and

then each neuron is assigned to a cluster. The pruning

method, such as Chen, Crown, and Grant (1991) and Mao

(2002), creates a neuron for each training example and

then to prune the hidden neurons by example selection.

The critical vector learning method, exemplified by

Scholkopf, Sung, Burges, Girosi, Niyogi, and Poggio

(1997) constructs an RBF with the critical vectors, rather

than cluster centers.

Moody and Darken (1989) located optimal set of

centers using both the k-means clustering algorithm and

learning vector quantization. The drawback of this method

is that it considers only the distribution of the training

inputs, yet the output values influence the positioning of

the centers. Bishop (1991) introduced the Expectation–

Maximization (EM) algorithm to optimize the cluster

centers with two steps: obtaining initial centers by

clustering and optimization of the basis functions by

applying the EM algorithm. Such a treatment actually
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does not perform a maximum likelihood learning but a

suboptimal approximation. Xu (1998) extended the model

for mixture of experts to estimate basis functions, output

neurons and the number of basis functions all together.

The maximum likelihood learning and regularization

mechanism can be further unified to his established

Bayesian Ying Yang (BYY) learning framework (Xu,

2004a–c), in which any problem can be decomposed into

Ying space or invisible domain (e.g., the hidden neurons

in RBFs), and Yang space or visible domain (e.g., the

training examples in RBFs), and the invisible/unknown

parameters can be estimated through harmony learning

between these two domains.

Chen et al. (1991) proposed orthogonal least square

(OLS) learning to determine the optimal centers. The OLS

combines the orthogonal transform with the forward

regression procedure to select model terms from a large

candidate term set. The advantage of employing orthogonal

transform is that the responses of the hidden layer neurons

are decorrelated so that the contribution of individual

candidate neurons to the approximation error reduction can

be evaluated independently. However, the original OLS

learning algorithm lacks generalization and global optim-

ization abilities. Mao (2002) employed OLS to decouple the

correlations among the responses of the hidden units so that

the class separability provided by individual RBF neurons

can be evaluated independently. This method can select a

parsimonious network architecture as well as centers

providing large class separation.

The common feature of all the above methods is that the

radial basis function centers are a set of the optimal cluster

centers of the training examples. Schokopf et al. (1997)

calculated support vectors using a support vector machine

(SVM), and then used these support vectors as radial basis

function centers. Their experimental results showed that the

support-vector-based RBF outperforms conventional RBFs.

Although the motivation of these researchers was to

demonstrate the superior performance of a full support

vector machine over either conventional or support-vector-

based RBFs, their idea of critical vector learning is worth

borrowing.

This paper proposes a novel approach to determining the

centers of RBF networks based on sensitivity analysis. The

remainder of this paper is organized as follows: In Section 2,

we describe the concepts of sensitivity analysis. In Section 3,

the most critical vectors are obtained by OLS in terms of

sensitivity analysis. Section 4 contains our experiments and

Section 5 offers our conclusions.

2. Sensitivity analysis on neural networks

Sensitivity is initially investigated for the construction of

a network prior to its design, since problems (such as weight

perturbation, which is caused by machine imprecision

and noisy input) significantly affect network training

and generalization (Widrow, 1960). Stevenson, Winter,

and Widrow (1990) established sensitivity analysis to

weight error and derive an analytical expression for the

probability of error in Madaline. Typically, one can

simulate hardware imprecision by introducing perturbation

on weight and input to measure the sensitivity. Zurada,

Malinowski, and Usui (1997) extended this idea of

sensitivity analysis to network pruning.

There are two different methods to measure sensitivity,

one is noise-to-signal ratio, the other is expectation of output

error. Sensitivity analysis is conducted by measuring the

response of the network when parameter perturbations are

introduced intentionally.

Treating all network inputs, weights, input perturbations,

and weight perturbations as random variables, Piche (1995)

defined sensitivity as the noise-to-signal-ratio (NSR) of the

output layer:
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of output y, inputs x, weights w, output error Dy, input

perturbation Dx and weight perturbation Dw, respectively.

Piche’s stochastic model is not generally valid because:

(1) All neurons in the same layer are assumed to have the

same activation function, but this is not the case in some

network models. (2) To satisfy the central limit theorem,

the number of neurons in hidden layers is assumed to be

large. (3) Weight perturbations are assumed to be very

small, but this would be too restrictive for network

training. To address these problems, Yeung and Sun

(2002) generalized Piche (1995)’s work in two significant

ways: (1) No restriction on input and output perturbation,

which widens the application areas of sensitivity analysis;

(2) The commonly used activation functions are approxi-

mated by a general function expression whose coefficient

will be involved in the sensitivity analysis. This treatment

provides a way to sensitivity analysis on activation

functions.

Zeng and Yeung (2001, 2003) proposed a quantified

measure and its computation for the sensitivity of the MLP

to its input perturbation. The sensitivity sl
i of a single neuron

i in layer l is defined as the mathematical expectation of the

absolute value of its output deviation caused by the

perturbation DXl:
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A bottom-up approach was adopted. After the sensi-

tivities of single neurons are calculated, the sensitivity of the

entire MLP network will be computed. Some applications of

the MLP, such as improving error tolerance, measuring

generalization ability, and pruning the network architecture,

would benefit from their theoretical study. However, this
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