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a b s t r a c t

This paper presents a hybrid model that couples m-support vector regression (m-SVR) with radial basis 
function networks (RBFNs) for prediction of critical heat flux (CHF). The hybrid model is achieved in
two steps. The first step is to determine the initial architect ure and initial weights of the hybrid model 
by an m-SVR. The second step is to adjust the initial weights using an annealing robust back propagati on
(ARBP) learning algorithm. Then the hybrid model is used to predict CHF, which is divided into two parts:
prediction of CHF for water flow in vertical round tubes and prediction of dryout type CHF for deionized 
water upflowing through a narrow annular channel with 0.95 mm gap. The dataset used in this paper is
taken from literature. In the first part, prediction of CHF and analysis of parametric trends of CHF are both 
carried out based on three conditions, fixed inlet conditions, local condit ions and fixed outlet conditions.
The predicted results agree better with the corresponding dataset than that of e-SVR. In the second part,
the predicted results are in better agreement wit h the experimen tal data than that of back-propagation 
network (BPN) employed in the literature. Therefore, the hybrid model presented in this paper is a poten- 
tial tool for predicting CHF and has advantages over other methods.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction 

Critical heat flux (CHF) has been thought as one of the most 
important parameters in the design and operation of high heat flux
systems, such as pressurized water reactors, steam generato rs and 
other boiling heat transfer units. Nuclear reactors are deigned to
receive maximum efficiency under full working power and its effi-
ciency will be improved when the core exit temperature increases.
In this case, the nuclear reactors shall be designed with appropriate 
thermal margin to assure that specified acceptab le fuel design lim- 
its are not exceeded during any condition of normal operation.
Thus, the thermal margin has a vital importance in the design 
and safety assessment of nuclear reactors. However, in the thermo 
hydraulic design of nuclear reactor, CHF limits the heat flux from 
the fuel rods and the power capabilities of nuclear reactors. The 
CHF condition is characterized by a sharp reduction of the local 
heat transfer coefficient that results from the replacemen t of liquid 
by vapor adjacent to the heat transfer surface [1,2]. For a nuclear 
reactor core, exceeding CHF can lead to a sudden large increase 
in cladding temperature due to the relatively poor heat transfer 
characterist ics of vapor, which for most coolants, can lead to a cat- 
astrophic failure of nuclear fuel.

The ability to predict CHF is therefore a vital issue for the per- 
formance and the safety of nuclear reactors. CHF predictio n in nu- 
clear reactors could be useful to know the real causes of the failure,
like the burnout of tubes or leaks that appear as consequences of
an accelerated process of corrosion caused by the high temperature 
reached in the material. A considerable amount of significant
experime ntal and theoretical research concerning CHF has been 
performed over the last five decades with the developmen t of
water cooled nuclear reactors. As a result of these efforts, several 
predictio n methodol ogies have been developed to predict CHF.
They can be categorized as three principal approach es: look-up ta- 
bles, empirica l correlations and phenomeno logical models.

Although many analytical and experimental studies on CHF 
have been presented in the literature, it would be incorrect to
say that a commonly shared apprehension of this problem has 
been established [3] because CHF is a complex phenomeno n and 
is influenced by many paramete rs. Even these three principle ap- 
proaches have their own limitatio ns, which are described below.
Firstly, Tong and Tang [4] evaluated look-up tables and empirica l
correlations and summarized the limitations of these two methods 
as follows. On the one hand, the Groeneveld CHF look-up table 
[5,6] does not provide much more convenience when it is applied 
to reactor design, since in this case proper adjustments for detailed 
geometri cal effects of a prototype rod bundle would be needed.
Such adjustment s are usually expressed in empirical formulae that 
are as complicated as the existing CHF design correlations. On the 
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other hand, a CHF correlation is accurate only in the particular flow
regimes within the ranges of the operating parameters in which it
was developed, thus the applicati on of CHF correlations should be
limited to within these ranges of parameters. Secondly, the limita- 
tions of phenomeno logical models are also summarized as follows.
Phenomenol ogical models were initiated in the 1970s [7] and fined
tuned in the 1990s [8]. Although the phenomenolog ical approach 
is the most reliable as it is a mechanistic model, it does require a
lot of empirical input in the form of rates of entrainm ent and rede- 
position, etc. [9]. Therefore, there has not yet developed a universal 
correlation for CHF prediction up to now.

Alternatively , advanced information processing approaches and 
numerical optimization techniqu es have been applied to predict 
CHF. In the past two decades, artificial neural networks (ANNs),
as one of artificial intelligence (AI) techniques, have been used to
predict CHF. There have been many studies on this topic. Most of
them were summari zed in Table 4 of [10] and the others were re- 
ported in the references [11,12]. Besides, genetic algorithm (GA), as
one of the optimization techniqu es, has also been used to predict 
CHF [13]. Generally, these above studies can be divided into two 
categories: one is that ANNs alone were used to predict CHF and 
the other is that ANNs were combined with other techniques to
predict CHF. In the first category, one commonl y used type of ANNs 
was back-propagat ion network (BPN), since BPN has the character- 
istics of simple structure and easy impleme ntation. Besides, two 
other types of ANNs, radial basis function networks (RBFNs) and 
high order neural network (HONN), were also used in this category.
In the second category, ANNs were combined with wavelet trans- 
form [11], fuzzy theory [12] and GA [14] for CHF prediction and 
approximat ion. Addition ally, as can be seen from Table 4 of [10],
some other researchers proposed adaptive network-based fuzzy 
inference systems (ANFIS) and genetic neural network (GNN) to
predict CHF. Both ANFIS and GNN methods were also a combina- 
tion of ANNs and fuzzy theory, GA. Compare d with using ANNs 
alone, those methods combined with the advantag es of ANNs 
and other techniques. In the GNN method, GA was used to opti- 
mize the weight and threshold of BPN. In the proposed nonpara- 
metric model of [14], GA was used to find useful input features 
in BPN. Thus, an accurate degree of CHF prediction and approxima- 
tion was obtained by these methods. Compared with conventional 
modeling approach es, ANNs do not require a deep knowledge of
CHF phenomena or their best-fit correlations. However, ANNs have 
some limitations due to the algorithm itself, such as depending on
researchers experience or knowledge to select structure parame- 
ters, difficulty in coming up with a reasonable interpretation of

the overall structure of the network [15], and easily getting stuck 
in a local minimum.

Recently , support vector regression (SVR) is considered to be a
promising technique that can overcome the drawback s of ANNs.
SVR is the applicati on of support vector machine (SVM) to the gen- 
eral regressio n problem. SVM, originally developed by Vapnik and 
his colleagues [16], is a machine learning method based on statis- 
tical learning theory (SLT). SVR implements the structural risk min- 
imization principle (SRM) principle, which has been shown to be
superior to the traditional empirical risk minimization (ERM) prin- 
ciple employed by conventi onal ANNs. It is the difference that 
equips SVR with many attractive features and good generaliz ation 
performanc e, which is the goal in statistical learning. In the last 
few years, SVR has been used as an alternative method to ANNs 
in many nuclear engineering applications [17–23]. In [17,18],
SVR alone was applied to two different prediction problems. In
[19,20], SVR was combined with GA, in which GA was used to opti- 
mize the parameters of SVR. In [21–23], SVR was used to predict 
departure from nucleate boiling ratio (DNBR), which is an impor- 
tant design paramete r for water-cooled reactors. As we all know,
departure from nucleate boiling (DNB) is one type of CHF. Although 
these studies have been carried out in various areas of nuclear 
engineeri ng, few studies have been conducted on the use of SVR 
for predictio n of CHF with the exception of studies by Cai 
[24,25]. In [24,25], SVM was applied to predict CHF in concen- 
tric-tube open thermosiphon. The paramete rs of SVM were opti- 
mized using a stepwise searching method [24] and chaotic 
particle swarm optimizati on (CPSO) [25]. However, the effect of
various input paramete rs on CHF, which was important to develop 
reliable predictio n models, was not investigated in [24,25].

In this paper, a hybrid model that combines m-SVR and RBFNs is
presente d to predict CHF. The proposed hybrid model is based on
the following two considerations . First, there are two common 
types of SVR based on different loss functions, e-SVR and its mod- 
ified version, m-SVR. All SVR used in [17–25] were e-SVR. However,
a shortcoming of e-SVR is that it is difficult to choose an appropri- 
ate value of e- in practice. To avoid this difficulty, Schölkopf et al.
[26] proposed m-SVR, which introduces a new parameter v in the 
primal problem to trade-off the tube size against model complexi ty
and empirica l risk. We thus choose m-SVR in our hybrid model. Sec- 
ond, because the kernels of the m-SVR are similar to the basis func- 
tions of the RBFNs with scatter partitioning [27], we use RBFNs as
another component of our hybrid model. However, since RBFNs are 
a kind of ANNs, they also have the disadvantag es of ANNs. One dis- 
advantag e is that it is difficult to determine the number of neurons 

Nomenc lature 

b bias of the final regression function 
D tube diameter (m)
G mass flow rate (kg/m2 s)
ID inner diameter (mm)
OD outer diameter (mm)
QCHF critical heat flux (kW/m2)
qo heat flux of outside tube (kW/m2)
w support vector weight 
X exit quality 
C regularizatio n parameter 
dH hydraulic diameter (m)
Hfg latent heat of vaporiza tion (kJ/kg)
L/dH length to hydrauli c to diameter ratio 
P pressure (MPa)
qi heat flux of inside tube (kW/m2)

u weight of the network 
Xe equilibrium quality 
Xc critical quality 

Greek symbols 
v tunable parameter 
ni slack variable 
b deterministi c annealing schedule 
g learning constant 
Dhi inlet subcooling (kJ/kg)
e insensitivity zone 
a lagrangian multiplier 
k weight of the network 
u influence function 
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