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a b s t r a c t

This paper presents the application of the boundary element method to the shape sensitivity analysis of

two-dimensional composite structures in contact. A directly differentiated form of boundary integral

equation with respect to geometric design variables is used to calculate shape design sensitivities for

anisotropic materials with frictionless contact. The selected design variables are the coordinates of the

boundary points either in the contact or non-contact area. Three example problems with anisotropic

material properties are presented to validate the applications of this formulation.

& 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Shape sensitivity analysis, that is the calculation of quantita-
tive information on how the response of a structure is affected by
changes in the variables that define its shape, is a fundamental
requirement for shape optimization. Shape optimization is an
important area of current development in mechanical and
structural design. Computerized procedures using optimization
algorithms can iteratively determine the optimum shape of a
component while satisfying some objectives, without at the same
time violating the design constraints. The boundary element
method being a surface-oriented technique is well suited for
shape optimization problems [1–5].

In the last two decades important advancements have been
made in the analysis of contact problems using the finite element
or boundary element methods. The latter seems to have proved
advantageous in treating the contact between linear elastic solids
[6–8]. The contact surface design is usually the first requirement
to reduce the stress peaks. Therefore, various efforts have been
made to produce optimal designs which increase the performance
and reliability of the structure in contact environments [9–13].
The effect of material properties should next be considered in
conjunction with the shape optimization to obtain the required
performance of the component. However, in this field of research
the analysis has been mostly concentrated on isotropic materials.

The application of composites in aerospace, automobile, civil
and marine industries is well established today due to the known

benefits such as high specific stiffness or strength and the
material’s tailoring facilities for creating high-performance struc-
tures. An understanding of the interactions between the compo-
site material components and their optimum contact surface
design can further enhance their potential applications.

The objective of this work is directed towards the shape
sensitivity analysis of two-dimensional anisotropic structures in
frictionless contact. This study continues the previous works of
the author on the shape optimization of anisotropic structures
using the boundary element method [1–3], where the effect of
material properties on the optimum shape design of structures
was investigated.

In Ref. [3], a directly differentiated form of the BIE, with respect
to boundary point coordinates, was used to calculate stress and
displacement derivatives for two-dimensional anisotropic struc-
tures. In Ref. [2], the optimal shape design of an anisotropic elastic
body of maximum stiffness and minimum weight under specified
loadings and using the boundary element method, was obtained.
The elastic compliance of the structure was minimized while
there were constraints on the maximum stress and weight of the
structure. The objective of the work in Ref. [1] was directed
towards the optimal positioning of features in anisotropic
structures for maximum stiffness while the weight remains
unchanged. The elastic compliance was minimized while there
were constraints on the maximum stress and the geometry of the
structure. To the author’s knowledge, no other publications are
available on the shape optimization of composite materials using
the boundary elements.

Here, the design sensitivity analysis of composite structures in
contact has been carried out by direct differentiation of the
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structural response rather than using the finite difference method.
The design variables are taken as the coordinates of some nodes
on the boundaries of either body which is in contact. The selection
of the boundary points as the design variables is more general
than selecting simple geometrical variables such as radii, etc. The
advantage of the proposed method is that it can be applied to any
geometry, not necessarily regular shapes. However, when entire
segments of the boundary or domain are governed by a single
variable such as radius, the relevant velocity terms are applied
together in the sensitivity analysis with respect to that variable
[1]. The formulation obtained in the present study may be
employed in conjunction with any numerical optimization
algorithm for the shape optimization of anisotropic components
in contact.

2. Constitutive equations for plane anisotropic elasticity

The stress–strain relations for a two-dimensional homo-
geneous, anisotropic elastic body in plane stress is
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where sjk and ejk (j, k ¼ 1, 2) are the stresses and strains,
respectively [14]. The coefficients amn are the elastic compliances
of the material. These compliances can be written in terms of
engineering constants as
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where Ek is Young’s modulus in the xk direction, G12 is the shear
modulus in the x1�x2 plane and njk is Poisson’s ratio. The
quantities Zjk,1 and Z1,jk are referred to by Lehknitskii [15] as the
coefficients of mutual influence of the first and second kinds,
respectively. For the plane strain case, Eq. (1) remains applicable,
provided that ajk is replaced by bjk:
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where the index 3 refers to the x3 direction. For especially
orthotropic materials, a16 ¼ a26 ¼ a63 ¼ 0 [15].

The compatibility equation of strains is
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and equilibrium is satisfied by taking stresses in terms of
derivatives of the Airy stress function f(x1, x2) as
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Combining Eqs. (1), (4) and (5), the governing equation for
the two-dimensional problem of anisotropic elasticity can be
obtained as
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By introducing the operator Ds (s ¼ 1, 4) as

Ds ¼
q
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Eq. (6) becomes

D1D2D3D4ðfÞ ¼ 0 (8)

and ms are the four roots of the characteristic equation

½a22 � 2ma26 þ ð2a12 þ a66Þm2 � 2a16m3 þ a11m4�
d4f
dz4
¼ 0 (9)

To have a solution for the stress function, the term in
square brackets must be zero. Lehknitskii [15] has shown
that, for an anisotropic material, these roots are distinct
and must be purely imaginary or complex and they may be
denoted by

m1 ¼ a1 þ ib1; m1 ¼ a2 þ ib2; m3 ¼ m̄1; m4 ¼ m̄2 (10)

where aj and bj (j ¼ 1, 2) are real constants, i ¼ O�1 and the
overbar represents the complex conjugate. Therefore, the stresses
and displacements in an anisotropic body can be expressed in
terms of the complex coordinates (zj)

zj ¼ x1 þ mjx2; j ¼ 1; 2 (11)

and their complex conjugates.

3. Review of the boundary element method for anisotropic
materials in contact

The analytical formulation of the direct boundary integral
equation (BIE) for plane anisotropic elasticity may be developed
by following the same steps as in the isotropic case [16–18].

The boundary element method is based on the unit load
solutions in an infinite body, known as the fundamental solutions,
used with the reciprocal work theorem and appropriate limit
operations. The boundary integral equation (BIE) of the BEM for
anisotropic materials is an integral constraint equation relating
boundary tractions (tj) and boundary displacements (uj) and it
may be written as
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Z
s

UjkðP;Q ÞtjðQ ÞdsðQ Þ; j; k ¼ 1;2
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P(z1,z2) and Q(x1,x2) are the field and load points, respectively.
Ujk(P,Q) and Tjk(P,Q) are the fundamental solutions that represent
the displacements and tractions, respectively, in the xk direction at
Q because of a unit load in the xj direction at P in an infinite body.
The constant Cjk depends on the local geometry of the boundary at
P, whether it lies on a smooth surface or a sharp corner. In terms of
the generalized complex variables

z1 ¼ ðx1 � z1Þ þ m1ðx2 � z2Þ

z2 ¼ ðx1 � z1Þ þ m2ðx2 � z2Þ (13)

the fundamental solutions for displacements and tractions,
respectively, can be written as

Ujk ¼ 2 Re½rk1Aj1 lnðz1Þ þ rk2Aj2 lnðz2Þ�

Tj1 ¼ 2n1 Re½m2
1Aj1=z1 þ m2

2Aj2=z2� � 2n2 Re½m1Aj1=z1 þ m2Aj2=z2�

Tj2 ¼ � 2n1 Re½m1Aj1=z1 þ m2Aj2=z2� þ 2n2 Re½Aj1=z1 þ Aj2=z2� (14)

where nj are the unit outward normal components at
Q with respect to the x1�x2 coordinate system. The constants
rkj are

r1j ¼ a11m2
j þ a12 � a16mj

r2j ¼ a12mj þ a22=mj � a26 (15)
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