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In this paper, a new approach is presented for quantifying the system sensitivity of key parameters influ-
encing the recognition of field liquefaction cases in a multilayer perceptron neural network (MLP model).
A novel index, the average sensitivity factor, SF;, derived from the mathematical formulation of neural
network is proposed to quantify the result of the sensitivity analysis. The SF; is a robust index of sensi-
tivity analysis for the MLP model and can be used in the other problems not just in the recognition of field
liquefaction problem. A well-trained MLP model is first developed to discriminate between the cases of
liquefaction and non-liquefaction. Excellent performance and good generalization is achieved, with the
higher recognition rate 98.9% in the training phase, 91.2% in testing phase and 96.6% on the overall cases.
Using this model, the SF; values are then calculated and reveal that peak ground acceleration (PGA) is the
most sensitive factor in both the liquefaction and non-liquefaction cases. Earthquake parameters (M,, and
PGA), the stress state parameters of the soil layer (rq, oy and ¢/,), and the soil resistance parameters
(SPT-N, Cp, Cg and FC) play approximately equal roles. The seismic demand factors (M, PGA, r4, oy, and
oy,) is more sensitive than the liquefaction resistance capacity factors (SPT-N, Cy, Cg, and FC) in the

two-class liquefaction recognition problem.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Soil liquefaction is known to be one of the most severe seismic
hazards, causing damage to structures founded on both shallow
and deep foundations, harbor structures, and disrupting buried
infrastructure such as communication lines [1-3]. In engineering
practice, it is essential to identify those sites vulnerable to liquefac-
tion-induced damage and to then mitigate possible damage by tak-
ing appropriate measures in advance of a seismic event. Seed and
Idriss’s [4] “simplified procedure” methodology has evolved as
standard practice in evaluating liquefaction potential. Various sim-
plified methods (the SPT-based, CPT-based, and V-based methods)
have been proposed and have become standard practice through-
out the world because of the difficulty and cost involved in obtain-
ing high-quality undisturbed samples of saturated sandy soils to be
tested in the laboratory [5,6]. These three simplified methods gen-
erally involve the presentation of data in a chart that defines the
boundary between liquefaction and non-liquefaction in an empir-
ical plot of cyclic resistance ratio (CRR) versus corrected SPT-N val-
ues, the normalized CPT tip resistance, and the normalized Vi,
respectively. Liquefaction cases arising from the Taiwan Chi-Chi
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Earthquake have recently become available for calibrating and
modifying the boundary between liquefaction and non-liquefac-
tion cases in these empirical plots [1]. Cetin et al. [7] also presented
improved correlations for assessment of the likelihood of initiation
of soil liquefaction. These new correlations can eliminate several
sources of bias intrinsic to previous similar correlations and pro-
vide greatly reduced overall uncertainty and variance.

In recent years, a useful and powerful computation tool, Artificial
Neural Networks (ANNs), has been introduced for solving the
problem of recognizing liquefaction cases (two-class pattern recog-
nition). Many researchers have reported similar or superior accu-
racy to that of simplified methods using ANNs in discriminating
between liquefaction and non-liquefaction cases. Goh [8-10] and
Juang and Chen [11] adopted different types of neural networks
and various combinations of input variables in assessing liquefac-
tion potential from actual field records (both CPT-q. and SPT-N data-
sets), concluding that neural networks are simpler than and as
reliable as conventional simplified methods. Baziar and Nilipour
[12] used CPT dataset to analyze the occurrence of liquefaction using
a multilayer perceptron network and the back-propagation algo-
rithm. Again, the authors concluded that the neural network
provided a more accurate prediction of liquefaction than the con-
ventional CPT-based method. Lee and Hsiung [13] adopted both a
probabilistic neural network (PNN) and multilayer perceptron mod-
el (MLP model) to identify liquefaction and non-liquefaction cases;
both approaches provided nearly perfect performance in terms of
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classifying liquefaction potential. The MLP model achieved a slightly
higher rate of recognition; however, longer searching time was re-
quired to overcome the local minima problem that potentially inter-
rupts the process that corrects for the back-propagation error in
obtaining the optimal result. A cyclic resistance ratio limit state
curve established from the successfully trained and tested neural
network was proposed by Juang et al. [14] and it can accurately pre-
dict the occurrence of liquefaction and non-liquefaction cases.

The shortcoming of the ANN approach is the difficulty involved
in interpreting the knowledge gained by “black-box” type models.
The evaluation of liquefaction potential is a complicated multivar-
iable problem with non-linear input and output relationships. It is
necessary to examine not only the predictive power of liquefaction
potential but also the key parameters that control liquefaction
occurrence, and to evaluate the relative importance of the param-
eters. In the liquefaction problem, both the simplified procedures
and the existing ANN models are unable to provide information
regarding the degree to which the model output (liquefaction or
non-liquefaction occurrence) is sensitive to changes in the key
parameters.

Sensitivity analysis of a neural network is an important tool in
solving engineering problems, especially when non-linearity is in-
volved. It is possible to infer the behavior of the system faces in re-
sponse to variations in parameters without the need to solve
complex non-linear relations. Sensitivity analysis is therefore re-
quired to identify those input variables that are important in terms
of contributing to predicting the output variable and in quantifying
how changes in the values of the input parameters alter the value
of the outcome variable. Baziar and Nilipour [12] and Goh [8,9]
considered the relative importance of effective parameters in lig-
uefaction assessments using the concept proposed by Garson
[15], however, this index cannot give clear physical meanings on
justifying the contribution of each input variable.

In the present study, a total of 644 SPT-based cases of liquefac-
tion and non-liquefaction were compiled and used to train and test
a MLP model with nine input parameters. The final optimal archi-
tecture of the MLP model, with the optimal interconnection weights
and threshold values, was attained via repeated trial-and-error. A
novel index, the average sensitivity factor, was first derived to cal-
culate the degree of variation in the output subject in response to a
small change in the input in the architecture of the MLP model. The
average sensitivity factor for the well-trained MLP model with the
best performance was then calculated to quantify the relative
importance of each input parameter used in the liquefaction iden-
tification of the 644 SPT-N based field cases. Moreover, the effect
of uncertainty and noise in the case dataset and the robustness of
the average sensitivity factor (SF;) were also discussed.

2. Neural network
2.1. Multilayer perceptron model

Artificial Neural Networks are highly simplified models of bio-
logical structures that mimic the behavior of the human brain.
The layered structure is composed of a large number of intercon-
nected processing elements designed to mimic biological neurons.
One of the most popular types of ANN is the MLP model with the
back-propagation algorithm. Fig. 1 shows the typical architecture
of an MLP model consisting of three layers of interconnected neu-
rons (input layer, hidden layer, and output layer). This architecture
is represented as m x n x p. Here, m is the number of neurons in
the input layer, n is the number of neurons in the hidden layer,
and p is the number of neurons in the output layer. Each neuron
in each layer is fully connected to all neurons in the higher layer,
and each connection has a weight (a scalar) associated with it.
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Fig. 1. Typical architecture of an MLP network.

These weights determine the nature and strength of the influence
between the interconnected neurons. The output signals from one
layer are transmitted to the subsequent layer through links that
amplify or attenuate (inhibit) the signals based on the associated
interconnection weights. Except for the neurons in the input layer,
the net input to each neuron is the sum of the weighted outputs of
the neurons in the previous layer. An activation function such as
the sigmoid logistic function is used to calculate the output of
the neutrons in the hidden and output layers. The neurons in the
hidden layer perform a non-linear transformation that enables
the MLP model to simulate a more complex and non-linear system
within the constraints of a three-layer MLP model. It is possible to
use more than one hidden layer; however, one layer is sufficient in
simulating a non-linear problem.

The MLP model has a generalized curve-fitting capability by
employing an incremental adaptation approach. Training of the
MLP model was carried out via a set of input patterns and associ-
ated output patterns (input-output pairs) randomly selected from
the collected cases in specified proportions. The back-propagation
algorithm is used as a learning mechanism to correct the connec-
tion weights iteratively and to minimize the system error produced
by each forward processing of the input signal. In the first stage of
the learning process, the input pattern generates a forward flow of
signals from the input layer to the output layer. The error for each
output neutron was then computed from the difference between
the computed and desired outputs. The system error in the nth
training pattern, E(n), is defined as

p
B =5 (@) -~y ). 1)
=

where dj(n) and yj(n) are the jth component of desired output and
computed output, respectively, and p is the number of neurons in
the output layer.

The second stage involves readjustment of the weights in the
hidden and output layers using a “generalized delta rule” to reduce
the difference between the computed and desired outputs. The
incremental correction of each interconnection weight can be com-
puted by

OE(n)
ow;

Awji(n) = —n + aAw;i(n — 1), (2)
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