
                           April 2010, 17(2): 36–40                                
www.sciencedirect.com/science/journal/10058885                 www.buptjournal.cn/xben 

The Journal of China 
Universities of Posts and 
Telecommunications

Phase noise sensitivity analysis of lattice constellation  
YU Guang-wei ( ), NIU Kai, HE Zhi-qiang, WANG Xu-zhen, LIN Jia-ru 

Key Laboratory of Universal Wireless Communications, Ministry of Education, Beijing University of Posts and Telecommunications, Beijing 100876, China 

 
Abstract 

Based on the assumption of large number of constellation points and high signal-to-noise ratio (SNR), phase noise sensitivity of 
lattice constellation is analyzed. The upper bound of symbol error rate (SER) in additive white Gaussian noise (AWGN) channel 
is derived from pairwise error probability. For small phase noise, phase noise channel is transformed to AWGN channel. With the 
aid of Wiener model, the obtained upper bound can be extended to phase noise channel. The proposed upper bound can be used as 
performance criterion to analyze the sensitivity of phase noise in multi-dimensional lattice constellation. Simulation results show 
that with the same normalized spectral efficiency, higher dimensional lattice constellations are more sensitive than lower ones in 
phase noise channel. It is also shown that with the same dimension of constellation, larger normalized spectral efficiency means 
more performance loss in phase noise channel. 
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1  Introduction   

With the development of communication technologies, high 
data rate is required urgently, which implies high spectral 
efficiency due to limited frequency resources. Besides 
multilevel modulation, lattice constellations are commonly 
accepted as good methods for transmission with high spectral 
efficiency [1]. Lattice constellation is modified from infinite 
lattice, and a lattice is a discrete set of points in real number 
field. Furthermore, the linearity and highly symmetrical 
geometry structure of lattice usually simplify the decoding 
task, such as sphere decoding [2–3] that utilizes the 
symmetrical structure of lattice and approaches the 
performance of maximum likelihood with polynomial decoding 
complexity. Consequently, lattice becomes a research focus in 
communication field. 

Sphere lower bound has been used in Ref. [4] as a 
benchmark for comparing multi-dimensional constellations in 
the block-fading channel. The application and approximation of 
sphere lower bound has been enumerated in Ref. [4]. A new 
signal model has been introduced in Ref. [5]. Based on the 
signal model, the exact SER using polar coordinates has been 
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computed in 2-demensional (2-D) constellation. However, to 
the best of the authors’ knowledge, performance analysis of 
multi-dimensional lattice constellation in phase noise channel 
has never been addressed.  

Phase noise is one of the primary factors that limit the 
performance of many communication systems. Phase noise is 
mainly caused by oscillator instability [6–7]. Sensitivity of 
phase noise is also the measure standard for different 
communication systems. Consequently, sensitivity analysis of 
phase noise for multi-dimensional lattice constellation is 
meaningful. Generally speaking, phase noise is usually 
modeled as Gaussian model or Wiener model [8]. In this 
contribution, Wiener model is employed to model the phase 
noise, and transmitted vector sets are modified from infinitely 
multi-dimensional lattice. Wiener model signifies the 
correlation between the phase noise per nearby 2-D 
component of a lattice constellation.  

In this contribution, SER upper bound of lattice 
constellation in Gaussian channel is derived based on the 
same assumption of total number of constellation points and 
average energy per constellation point as in Ref. [1], and 
offset vector is considered to minimize the average energy per 
constellation point. Furthermore, the derivation of the upper 
bound can be extended to phase noise channel in 
consideration of SNR degradation, and the obtained upper 
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bound is tight for larger number of lattice constellation points 
and higher SNR. Therefore, this upper bound can be used as a 
criterion to analyze the sensitivity of phase noise of different 
dimension lattice constellation.  

The remainder of this article is organized as follows. The 
signal model and basic definitions of lattice are introduced in 
Sect. 2, where phase noise channel with small phase noise is 
transformed to Gaussian channel by approximation of 
one-order maclaurin polynomial. The SER upper bound of 
lattice constellation in Gaussian channel is derived in Sect. 3. 
Sect. 4 shows the simulation results and conclusions are 
presented in Sect. 5.  

2  Definitions of lattice and signal model 

2.1  Definition of lattice 

The basic definition of lattice will be reviewed [9–11]. Let 
{ }1 2, ,..., mv v v  be a linearly independent set of vectors in n\  

(so that m n≤ ). The set of points 
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is called a lattice of dimension m , and { }1 2, ,..., mv v v  is 

called a basis of the lattice.  
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A  is called a generator 

matrix for the lattice. More concisely, the lattice can be 
defined by its generator matrix as { }, mΛ = =   ∈x λA λ Z . 

The Gram matrix for a lattice is defined as the matrix 
T=G AA , where T( )i  denotes transposition. In following 

sections, full-rank lattice is considered, that is, m n= , and A 
is a square matrix. 

The determinant of a lattice is defined to be the determinant 
of the Gram matrix G. For full-rank lattices, the square root of 
the determinant is the fundamental volume of the lattice.  

Kissing number of a lattice is the number of spheres that 
touch one sphere in the sphere packing problem [11], i.e., the 
number of points nearest to one lattice point, where the ‘nearest’ 
means the minimum Euclidean distance of a lattice. For a lattice, 
the kissing number is the same for every lattice point.  

2.2  Signal model 

The transmitted vector is polluted by both phase noise and 
AWGN, and the signal model is denoted by                                      

T T T= +� �y Hx n                                   (1) 

where diag( ) ,N N×= ∈^H h with 1 2 jj j(e ,e ,......,e )n Nθθ θ= ∈^h , 

is the phase noise diagonal matrix, and N∈� ^y  is the 

N-dimensional complex received signal vector, with 
( ) 2

1 1Re , Im ,...,Re ,Im .N
N Ny y y y= ∈\y N∈� ^x  is the 

N-dimensional complex transmitted signal vector, with 
( ) 2

1 1Re ,Im ,...,Re ,Im ,N
N Nx x x x= ∈\x where Re i  and 

Im i  denote the real part and imaginary part, respectively. 
N∈^n  is the N-dimensional complex Gaussian noise vector. 

The real transmitted signal vector x  is assumed to belong 
to a 2N-dimensional signal constellation 2NS ∈\ , where S  
is carved from 2N-dimension infinite lattice { ,Λ = uA  

}2N∈]u  with full rank generator matrix 2 2N N×∈\A  [10]. 

With the consideration of normalization purpose, fundamental 
volume is fixed to 1. 

The simplest labeling operation can be used for lattice 
constellation, that is, { }2, ,N

mS = +   ∈]uA v u  where m =]  

{ }0,1,..., 1m −  [9], lb m  is the number of bits per dimension 

and v  is the offset vector used to minimize the average 
transmitted energy of lattice constellation S . Therefore, the 
rate of such lattice constellation is lb R m=  bit per 
dimension, which is usually referred to as full-rate uncoded 
transmission and R is the so-called normalized spectral 
efficiency per dimension. 

For the transmitted symbol ix� , the received symbol iy�  

after the phase noise channel is                             
je i

i i iy x nθ= +� �                                    (2) 
where ix� , iy�  and in  are complex symbols, and in  

represents the complex AWGN whose real and imaginary 
parts both have zero mean and a variance 0N . Furthermore, 

iθ  is defined as Wiener model [8], and discrete time Wiener 

phase noise can be expressed as 
1 ( )i i w iθθ θ+ = +                                       (3) 

where ( )w iθ  is stationary Gaussian process with zero mean 

and a variance 2
θσ , and independent of in . Meanwhile, iθ  

and in  are independent of ix� .  
Without loss of generality, 0θ  is assumed to be zero and      
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2
i iE E x⎡ ⎤= ⎣ ⎦�  is the average energy per symbol and SNR 

is SNR 0(2 )i iE NΠ = . If iθ  is far less than 1, je iθ  can be 

approximated by one-order Maclaurin polynomial   
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