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a b s t r a c t

Conventional element-based methods, such as the finite element method (FEM) and

boundary element method (BEM), require mesh refinements at higher frequencies in

order to converge. Therefore, their applications are limited to low frequencies.

Compared to element-based methods, the wave-based method (WBM) adopts exact

solutions of the governing differential equation instead of simple polynomials to

describe the dynamic response variables within the subdomains. As such, the WBM

does not require a finer division of subdomains as the frequency increases in order to

exhibit high computational efficiency. In this paper, the design sensitivity formulation

of a semi-coupled structural–acoustic problem is implemented using the WBM. Here,

the results of structural harmonic analyses are imported as the boundary conditions for

the acoustic domain, which consists of multiple wave-based subdomains. The cross-

sectional area of each beam element is considered as a sizing design variable. Then, the

adjoint variable method (AVM) is used to efficiently compute the sensitivity. The

adjoint variable is obtained from structural reanalysis using an adjoint load composed

of the system matrix and an evaluation of the wave functions of each boundary. The

proposed sensitivity formulation is subsequently applied to a two-dimensional (2D)

vehicle model. Finally, the sensitivity results are compared to the finite difference

sensitivity results, which show good agreement.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The most commonly used numerical prediction techniques for structural–acoustic problems are deterministic element-
based methods such as the finite element method (FEM) [1,2] and the boundary element method (BEM) [3,4]. These
methods use locally supported simple polynomials as shape functions within the elements. Since these methods have no
restrictions regarding the geometric complexity of the considered problem, they are powerful for analyzing a generally
shaped model. For example, in the FEM the entire domain must be divided into small elements; the system matrices are
composed of real, banded, symmetric, and frequency independent coefficients, such that efficient storage and solution
schemes are possible. However, unbounded problems can only be tackled after the introduction of an additional artificial
boundary condition, thereby making the FEM not inherently suited for the prediction of unbounded acoustic problems. In
contrast, the BEM requires only the boundary discretization of the considered problem, such that the number of element of
boundary element (BE) models is smaller than the corresponding finite element (FE) models. It can also handle unbounded
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problems, because the Sommerfeld radiation condition is inherently satisfied due to the Green functions applied. However,
BE matrix coefficients are complex, fully populated, asymmetric, and frequency dependent, thereby making the model
construction and solution processes more complicated than for the FEM. Furthermore, the drawback of element-based
methods is that the number of elements and subsequent computational efforts increase as the wavelengths shorten at
higher frequencies in order to maintain a reasonable prediction accuracy. As such, the prediction results at higher
frequencies are substantially affected by interpolation and pollution errors [5]; thus, the practical applicability of element-
based methods is limited to low frequencies.

The statistical energy analysis (SEA) [6] is the most widely used method for predicting system response at higher
frequencies, using the power flow between subsystems. It is used to estimate the averaged energy response functions of
individual subsystems. This statistical approach is computationally efficient, and can be used to predict the dynamic response
under uncertainty pertaining to manufacturing tolerances, fabrication imperfections, and the dynamic properties of joints
between components. However SEA is not valid for mid-low frequency analyses due to its insufficient modal density for
obtaining reliable results [7]. To make up for this weakness, a hybrid method combining the finite element analysis (FEA) and
SEA were developed [8,9]. However, compatibility at the joint between the SEA and FEA variables must be considered in order
to maintain accuracy. Furthermore, major drawbacks for SEA are that the spatial variation of dynamic responses within a
subsystem cannot be represented, and that design variables do not explicitly appear in the governing equation. Therefore, SEA
analyses are not generally preferred for use in a design sensitivity analysis (DSA); Ref. [10] gives an overview of other, non-SEA
based mid-frequency prediction techniques. One of them is the wave-based method (WBM).

The WBM is a deterministic prediction technique based on an indirect Trefftz approach [11,12]. Dynamic response
variables are described by a set of wave functions, which are the exact solutions of the governing differential equations. In
the WBM, the main processes of model construction and solution are to determine the contribution factors to make wave
functions satisfy the boundary and continuity conditions. Compared to conventional element-based methods, no fine
discretization of the domain is necessary, only multiple convex subdomains are required for its convergence—which are
independent of the frequencies. As a result, the WBM yields a small number of subdomains and exhibits a high
computational efficiency. The efficiency of the WBM at higher frequencies has been shown for various applications in
several publications like in Refs. [10,13]. In those publications, the WBM has been shown to be more efficient as compared
to commonly used element-based methods. Moreover, every field variable can be represented via a combination of
corresponding wave functions and contribution factors, thereby leading to a regular sensitivity equation form.

In this paper, the DSA of a structural–acoustic semi-coupled problem using the WBM is presented. The DSA is the
essential part in the gradient-based optimization. There are many published works conducted for DSA and optimization in
the structural–acoustic problem. Ma and Hagiwara [14,15] and Choi et al. [16] performed DSA using FEM on the
structural–acoustic coupled problem. However, it requires excessive number of 3-D elements predicting the acoustic field
variable using FEM. To avoid the discretization of air domain, BEM replaces FEM in the acoustic analysis. Salagame et al.
[17] derived analytical sensitivity of acoustic power radiated from plates using analytic method. Wang and Lee [18]
developed global acoustic DSA by employing continuum sensitivity. The chain rule regarding the continuum structural
sensitivity with acoustic sensitivity was used to obtain accurate and efficient sensitivity results. Lee et al. [19] introduced
the topology optimization on boundary element model using genetic algorithm. Kim et al. [20] presented the design
sensitivity analysis of structural–acoustic problems using sequential adjoint variable method (AVM). The adjoint variable
is calculated from the structural adjoint reanalysis.

Note that the earlier works are the element-based DSA of a structural–acoustic system, whereas there are few papers
pertaining to DSA using the WBM. Recently, a DSA for a mid-frequency analysis of a coupled vibro-acoustic problem was
developed [21], though it adopts a direct differentiation method (DDM) to obtain the sensitivity. DDM directly solves for
the design dependency of a state variable, and then computes the sensitivity using a chain rule. However, the AVM
constructs an adjoint problem that solves for the adjoint variable, which contains all implicitly dependent terms. Hence,
the AVM is preferable when the number of design variables is larger than active constraints [22]. To this end, most
engineering problems are focused on optimizing a particular objective function of a model consisting of many design
variables; therefore, the AVM is considered much more efficient than the DDM.

In this paper, the structural dynamic response is obtained using the FEM, and the results are imported as boundary
conditions for the wave-based acoustic model. The cross-sectional area of each structural element is considered as a sizing
design variable. The adjoint variable is then obtained from a structural reanalysis using an adjoint load comprised of the
wave-based system matrix and an evaluation of the wave functions of each boundary location. The sensitivity formulation
proposed in this paper is subsequently applied to a generally shaped two-dimensional (2D) vehicle model, and finally the
results are compared to finite difference sensitivity results, with good agreement obtained.

2. Structural finite element method

The equation of the dynamic structure under harmonic excitation can be written as [16]

�o2rzðxÞþ joCzðxÞþAzðxÞ ¼ fðxÞ, x 2 OS, (1)

where OS is the structural domain, o is the angular frequency, r and C are the structural mass density and viscous
damping effects, respectively, A is a linear partial differential operator that represents the stiffness of the structure, z
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