
Global sensitivity analysis using sparse grid interpolation and
polynomial chaos$

Gregery T. Buzzard �

Department of Mathematics, Purdue University, West Lafayette, IN 47907, United States

a r t i c l e i n f o

Article history:

Received 11 October 2010

Received in revised form

1 July 2011

Accepted 25 July 2011
Available online 31 July 2011

Keywords:

Sparse grid

Polynomial interpolation

Stochastic collocation

Polynomial chaos

Sensitivity analysis

Optimization

a b s t r a c t

Sparse grid interpolation is widely used to provide good approximations to smooth functions in high

dimensions based on relatively few function evaluations. By using an efficient conversion from the

interpolating polynomial provided by evaluations on a sparse grid to a representation in terms of

orthogonal polynomials (gPC representation), we show how to use these relatively few function

evaluations to estimate several types of sensitivity coefficients and to provide estimates on local

minima and maxima. First, we provide a good estimate of the variance-based sensitivity coefficients of

Sobol’ (1990) [1] and then use the gradient of the gPC representation to give good approximations to

the derivative-based sensitivity coefficients described by Kucherenko and Sobol’ (2009) [2]. Finally, we

use the package HOM4PS-2.0 given in Lee et al. (2008) [3] to determine the critical points of the

interpolating polynomial and use these to determine the local minima and maxima of this polynomial.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

A common task in fitting a model to data is to find parameters
p¼ ðp1, . . . ,pnÞ to minimize some cost function, C(p), often a sum of
squared differences between model output and experimental data.
This is a particularly a difficult task when the dimensionality of the
parameter space is large and the dependence of C on p is nonlinear.
One approach to this problem is to sample the function at some set
of points and try to estimate relevant quantities, such as various
types of sensitivity coefficients and the location of local minima,
from this sample. Often, these samples are used to construct a
simpler model (e.g., linear, polynomial, sum of Gaussians, etc.) that
may be used to approximate the original model in a computationally
inexpensive way. Such approximate models are described with
various terms, including metamodels, surrogate models, response
surfaces and model emulators. In settings in which the sampling
points are given in advance, common approaches include RS-HDMR,
cut-HDMR, ANOVA decomposition, kriging, and moving least
squares. In settings in which the sampling points may be chosen
at will, two common approaches are sparse grid interpolation and
generalized polynomial chaos (gPC) using cubature. In this paper we
focus on these last two metamodels, the relationship between them,

and their application to computing global sensitivity coefficients and
global maxima and minima.

More precisely, sensitivity methods can be divided into global
(the focus in this paper) and local, while global methods can in
turn be divided into screening methods, non-parametric methods,
variance-based methods, and moment-independent or density
based methods. The classic paper on screening methods is [4],
which details a method for sampling model outputs over a high-
dimensional input space in order to estimate the mean and
variance of partial derivatives of the output with respect to each
input. A number of non-parametric approaches for global SA,
including locally weighted regression, additive models, projection
pursuit regression, and recursive partitioning regression are
detailed in [5]. Further non-parametric methods, along with a
description for using these methods to estimate values and
confidence intervals for variance-based sensitivity coefficients
are given in [6]. An overview of global SA methods is provided
in [7], which also introduces a new, moment-independent impor-
tance measure; this measure is discussed also in [8]. Many global
SA methods are discussed in [9]. In terms of other metamodels, an
overview of Kriging and discussion of bootstrapping to estimate
the variance in the Kriging predictor is given in [10]. A discussion
of gPC and its application to computing sensitivity coefficients
appears in both [11,12].

Another approach to constructing a polynomial metamodel is
sparse grid interpolation, which has been used widely in recent
years as a means of providing a reasonable approximation to a
smooth function, f, defined on a hypercube in Rn, based on relatively
few function evaluations [13]. This method produces a polynomial
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interpolant using Lagrange interpolating polynomials based on
function values at points in a union of product grids of small
dimension [14,15]. However, for many purposes, there are compu-
tational advantages to a representation in terms of orthogonal
polynomials; such a representation is also known as a generalized
polynomial chaos (gPC) representation. Most relevant for the
discussion here is the efficient calculation of the Sobol’ sensitivity
coefficients of a polynomial in gPC form.

In this paper we start with the efficient conversion from an
interpolating polynomial in Lagrange form to the gPC form as
described in [16]. We combine this with the efficient calculation
of the Sobol’ sensitivity coefficients of [12,11] to produce an
efficient algorithm for estimating these coefficients using a
relatively small number of function evaluations. As seen in
numerical examples, this method is both accurate and efficient
for smooth functions when compared with other approaches for
estimating these values. We also show how to use the gPC
representation to estimate two derivative-based sensitivity
measures discussed in [2]. Finally, we discuss the use of poly-
nomial homotopy methods for finding the critical points of
the interpolating polynomial [3]. In cases in which the global
maximum or minimum does not lie on the boundary of the
interpolating hypercube, this allows us to find the global mini-
mum or maximum (within the hypercube) directly. In addition to
these applications, we note that sparse grid interpolation likely
has applications in the context of other global SA methods as well.
We leave this as a topic for future research.

2. Theory

In this section we provide further background on sparse grid
interpolation, generalized polynomial chaos, and sensitivity analysis.

2.1. Sparse grid interpolation and polynomial chaos

In one variable, Lagrange interpolation proceeds by selecting a
set of points, x1, . . . ,xn and degree n�1 polynomials Lj so that Lj is
1 at xj and 0 at xk for ka j. Given function values f(xj), we obtain an
interpolating polynomial that agrees with f at each xj by taking
PðxÞ ¼

Pn
j ¼ 1 f ðxjÞLjðxÞ. For a well-chosen set of points, such as the

Chebyshev–Gauss–Lobatto (CGL) points, and for smooth f, the
resulting polynomials converge to f quite rapidly as the number of
interpolating points is increased [14]. The simplest generalization
of this to d dimensions is to use a full product grid obtained
from the product of d one-dimensional interpolating sets,
with Lagrange polynomials obtained by taking products of the
one-dimensional Lagrange polynomials. However, since the
resulting number of points is exponential in d, this method is
not practical for anything but small d. As described in [14] and

elsewhere, Smolyak [15] devised a method in which the inter-
polating points in a hypercube, [0,1]d, in d dimensions are
obtained as a union of smaller product grids. Examples of full
and sparse grids in two dimensions appear in Fig. 1.

In the sparse grid, the dotted points show the locations of all the
points in the sparse grid, while the circled points show the points in
one product subgrid. This example shows that using sparse grid
points, the function is sampled heavily along the coordinate axes,
then somewhat less near corners and boundaries, and even less in
the interior. With these values, we can again represent f as a sum of
products of one variable Lagrange polynomials. On each of the
smaller product grids in the sparse grid, this is a simple tensoriza-
tion of the one-dimensional Lagrange representation given above.
The contributions for different subgrids are then summed with
appropriate weights to produce the interpolating polynomial on the
entire sparse grid. The use of a nested sequence of points in one
dimension, such as appropriate subsets of CGL points, implies that
the good convergence properties of interpolation in one dimension
carry over to higher dimensions. Details of the sparse grid construc-
tion and precise estimates on the rate of convergence may be found
in [14]. With appropriate modifications, sparse grid interpolation
may also be performed on hypercubes in which some of the sides
are unbounded [16].

In the gPC representation of f, the function is still represented
as the sum of products of polynomials in one variable, but now
the underlying one dimensional polynomials are orthogonal in
the weighted L2 sense. That is, over some fixed interval, I, in the
real line, and with some fixed positive weight function w(x),
they satisfy

R
IPjðxÞPkðxÞwðxÞ dx¼ djk. A common example is the

Legendre polynomials, which are orthogonal over the interval
[�1, 1] using the weight function w(x)¼1. The weight function
often corresponds to a probability distribution. More details may
be found in [13,12].

2.2. Sensitivity analysis

As described in [1,17] and elsewhere, a useful decomposition
of a function f ðxÞ ¼ f ðx1, . . . ,xnÞ defined on a hypercube in Rn is to
write it as a normalized sum of functions that depend on a
specified subset of the variables:

f ðxÞ ¼ f0þ
Xn

i ¼ 1

fiðxiÞþ
X

1r io jrn

fijðxi,xjÞþ � � � þ f12...nðx1, . . . ,xnÞ,

with a (weighted) orthogonality condition imposed on pairs of
functions in this decomposition and a 0 mean condition in each
variable separately imposed on each function individually. In various
contexts this decomposition is known as the Sobol’ decomposition,
the ANOVA decomposition, or the HDMR representation of f. As
described in [17,12], one method for achieving this decomposition
is by expanding f in terms of a basis of tensored one-dimensional
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Fig. 1. Full and sparse grids in two dimensions using CGL points. Left: The full grid is obtained as a product of the points along the coordinate axes in the sparse grid. Right:

The dotted points show the entire sparse grid of nesting depth 4, while the circled points show one of the component product subgrids.
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