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" The proposed stochastic model outperforms the deterministic model.
" The price of biofuel is modeled as Geometric Brownian Motion (GBM).
" The proposed model can be applied in any biofuel supply chain.
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a b s t r a c t

In this paper, we propose a stochastic production planning model for a biofuel supply chain under
demand and price uncertainties. The supply chain consists of biomass suppliers, biofuel refinery plants
and distribution centers. A stochastic linear programming model is proposed within a single-period plan-
ning framework to maximize the expected profit. Decisions such as the amount of raw materials pur-
chased, the amount of raw materials consumed and the amount of products produced are considered.
Demands of end products are uncertain with known probability distributions. The prices of end products
follow Geometric Brownian Motion (GBM). Benders decomposition (BD) with Monte Carlo simulation
technique is applied to solve the proposed model. To demonstrate the effectiveness of the proposed sto-
chastic model and the decomposition algorithm, a representative supply chain for an ethanol plant in
North Dakota is considered. To investigate the results of the proposed model, a simulation framework
is developed to compare the performances of deterministic model and proposed stochastic model. The
results from the simulation indicate the proposed model obtain higher expected profit than the deter-
ministic model under different uncertainty settings. Sensitivity analyses are performed to gain manage-
ment insight on how profit changes due to the uncertainties affect the model developed.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Today’s energy consumption is increasing tremendously. Recent
studies have shown that mainstream crude oil cannot sustain the
volume of worldwide demand and consumption of energy [1–4].
Renewable energy, specifically biofuel, has gained attention as a
competitor and alternative source of energy to crude oil, especially
in the transportation sector. In order to ensure a consistent and a
competitive supply of these biofuels to the distribution centers, a
reliable and resilient supply chain is needed to help coordinate
and streamline the demand and supply activities. Literature that
has considered biofuel supply chain has not extensively incorpo-
rated uncertainties into the supply chain decision-making [5–10].
Incorporation of uncertainties in the supply chain decision-making
process helps to make better decisions in realizing the overall objec-

tive of the supply chain [11–13]. However, most of the applications
in the biofuel supply chain have focused on deterministic problems,
such as network optimization and plant location problems by using
mixed integer linear programming (MILP) methods [14–23]. Not en-
ough attention has been given to incorporate demand, production,
price and other forms of uncertainties in the supply chain deci-
sion-making process. Decisions based on deterministic assumptions
will result in non-optimal solutions if uncertainties exist. In the bio-
fuel supply chain system, multiple uncertainties such as demands
and prices of end products exist; therefore it is essential to develop
an optimization model in the biofuel supply chain decision-making
that considers existing uncertainties.

Uncertainties in the supply chain have attracted a lot of atten-
tion because of its importance in decision-making, and biofuel sup-
ply chain uncertainties are not an exception. These uncertainties
can be incorporated at the strategic, tactical and operational deci-
sion-making levels within the supply chain. Accurately incorporat-
ing uncertainties into the biofuel supply chain will result in better
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decision-making and give significant improvement of the expected
profit and cost. Although this is crucial within the entire supply
chain decision-making process, most models that have discussed
biofuel supply chain have not discussed these uncertainties exten-
sively. This paper combines both.

The objective of this paper is to maximize the profit of a multi-
product, single-period, three-echelon supply chain system sub-
jected to uncertainties in demands and prices of end products.
The problem is modeled as a stochastic programming problem,
with key decisions such as products production volume, amount
of raw material purchased, and the amount of raw materials con-
sumed. To solve the stochastic problem, the decision variables
are separated into first-and second-stage decisions. The first-stage
decisions are the initial amount of raw materials purchased, vol-
umes end products to be produced, and the raw material con-
sumed. Decisions such as the amount of end products sold,
backlog, and lost sales are considered as second-stage decisions.
This means postponing the rest of the decisions for the next period
after the realization of the uncertainty. The Benders decomposition
with Monte Carlo simulation technique is used to solve the pro-
posed model. To demonstrate the effectiveness of the proposed
stochastic models and decomposition algorithm, a realistic repre-
sentative biofuel supply chain in North Dakota is presented.

The rest of this article is organized as follows: Section 2 gives a
summary of the problem statement. Section 3 presents the deter-
ministic model. In Section 4, the proposed stochastic models are

presented. In Section 5, the Benders decomposition with simulation
algorithm is discussed. Section 6 provides the numerical experi-
mental design and analyses. Final conclusions and future work
are discussed in Section 7.

2. Problem statement

This paper studies a biofuel supply chain as shown in Fig. 1. The
supply chain consists of three layers: biomass raw materials sources,
biofuel refinery plants, and distribution centers. There are i number
of raw material sources, k number of plants, and c number of distri-
bution centers. The number of end products of biofuel refinery are
represented by the term j. Representation set for the probability,
and number of scenarios, are expressed as p, and n respectively. Bio-
mass raw materials are transported from the sources of raw materi-
als (via truck or rail) to the biofuel plants. Blending of ethanol and the
sales of the products take place at the biofuel plants and demand
locations respectively. Demands for these products are imposed by
external customers. Depending on the producer’s option, the prod-
ucts are either sold directly or traded on the Chicago Merchantile Ex-
change (CMEX).

Meanwhile, initial inventory at the plants for both raw materials
and end products are given. Costs, such as inventory holding, backlog
and lost sales are added at the producer’s expense. Demands of end
products are random with known probability distributions. The prices
of end products follow the Geometric Brownian Motion (GBM).

Nomenclature

Index
i represents supply sources of raw materials i = 1,2, . . . I
j represents the product j = 1,2, . . . J
k represents the refinery k = 1,2, . . .K
c represents the customer distribution centers

c = 1,2, . . .C

Decision variables
xi,k amount of biomass raw materials from supply source i

to plant k
sj,k amount of product j sold at plant k
zj,k amount of product j produced at plant k
vi,k amount of raw materials from supply source i con-

sumed at plant k
Ri,j amount of raw materials inventory from supply source i

for product j
Fj,k amount of end products j at plant k
Lj,k amount of lost sales of product j at plant k
Bj,k amount of backlog of product j at plant k

Parameter
Pj,k selling price of product j at plant k
hi,k available biomass from the supply source i at plant k
Dj,k conversion factor for the end product j at plant k
yi,k unit cost of raw materials from supply source i at plant k
si,k unit transportation cost of raw materials from supply

source i to plant k
sk,c unit transportation cost of end products from plant k to

demand point c
di,k transportation distance of raw materials from supply

source i to plant k
dk,c transportation distance of end products from plant k to

demand point c
F0

j;k end products inventory for previous period at plant k for
product j

R0
i;k raw material inventory for previous period at plant k for

raw material from source i
B0

j;k amount of backlog for previous period at plant k for
product j

L0
j;k amount of lost sale for previous period at plant k for

product j
bi,t cost for processing raw material from supply source i
mj,k cost for lost sales for product j at plant k
qj,k cost for backlog for product j at plant k
Dj,k demand for product j at plant k
vi,k amount of raw materials consumed from supply source

i at plant k
cj,k amount of fractional lost in demand for product j at

plant k
S0 initial spot price of the end products

Stochastic variables and terms
n scenario representation for the stochastic variable
pn probability of the scenario of each stochastic variable
Sj,k,n stochastic sales amount of product j at plant k based for

the scenario n
Bj,k,n stochastic backlog for previous period at plant k for

product j based on the scenario n
Fj,k,n stochastic end products inventory in previous period at

plant k for product j scenario n
Lj,k,n stochastic lost sale for previous period at plant k for

product j based on the scenario n
Pj,k,n stochastic price of finished goods of product j at plant k

for the scenario n
St calculated spot price of the end products after the price

scenarios have been generated
l iteration steps for benders decomposition
N total number of scenarios generated
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