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Abstract

In this paper, we address four major issues in the .eld of iterative learning control (ILC) theory and design. The .rst issue is concerned
with ILC design in the presence of system interval uncertainties. Targeting at time-optimal (fastest convergence) and robustness properties
concurrently, we formulate the ILC design into a min–max optimization problem and provide a systematic solution for linear-type ILC
consisting of the .rst-order and higher-order ILC schemes. Inherently relating to the .rst issue, the second issue is concerned with the
performance evaluation of various ILC schemes. Convergence speed is one of the most important factors in ILC. A learning performance
index—Q-factor—is introduced, which provides a rigorous and quanti.ed evaluation criterion for comparing the convergence speed of
various ILC schemes. We further explore a key issue: how does the system dynamics a8ect the learning performance. By associating
the time weighted norm with the supreme norm, we disclose the dynamics impact in ILC, which can be assessed by global uniform
bound and monotonicity in iteration domain. Finally we address a rather controversial issue in ILC: can the higher-order ILC outperform
the lower-order ILC in terms of convergence speed and robustness? By applying the min–max design, which is robust and optimal,
and conducting rigorous analysis, we reach the conclusion that the Q-factor of ILC sequences of lower-order ILC is lower than that of
higher-order ILC in terms of the time-weighted norm.
? 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

In the last two decades iterative learning control (ILC)
has been extensively studied, achieves signi.cant progress
in both theory and application, and becomes one of the
most active .elds in intelligent control and system con-
trol (Arimoto, 1985; Kawamura, Miyazaki, & Arimoto,
1987a; Hara, Yamamoto, Omata, & Nakano, 1988; Bien
& Huh, 1989; Sugie & Ono, 1991; Kuc, Lee, & Nam,
1992; Jang, Choi, & Ahn, 1995; Saab, 1995; Amann,
Owens, & Rogers, 1996; Phan & Juang, 1996; Lucibello,
Panzier, & Ulivi, 1997; Lee & Bien, 1997; Longman &
Lo, 1997; Moore, 1998; Chien, 2000; Lee & Lee, 2000;
de Roover, Bosgra, & Steinbuch, 2000; Wang, 2000;
Norrlof & Gunnarsson, 2001; Ham, Qu, & Kaloust, 2001;
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Xu & Tan, 2002). On the other hand, there are still numerous
open problems left to researchers for further exploitation. In
this paper, we address four open and most important issues
in the .eld of ILC theory and design:

1. Can we design iterative learning controllers possessing
robustness and optimality concurrently, in particular
achieving fastest convergence in the presence of system
uncertainties?

2. Can we evaluate learning convergence speed for various
ILC schemes in a rigorous and quantitative manner?

3. How does the system dynamics a8ect the learning per-
formance in iteration domain?

4. Can a higher-order ILC scheme perform better than
lower-order ILC schemes?

It has been made clear that the ILC convergence is solely
related to the system direct feed-through term. When the
feed-through term is associated with a interval uncertainty,
i.e. with lower and upper bounds, the idea of traditional ILC
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design is to guarantee the convergence condition for the
worst case (upper bound), hence leads to a slower conver-
gence speed due to the conservative design. Targeting at the
time-optimal property and meanwhile assuring the learning
convergence, we formulate the ILC design into a min–max
optimization problem and provide a systematic solution. The
max operation maximizes the inNuence from the system un-
certainty, and min operation minimizes a learning factor that
determines the convergence speed.
When a highly nonlinear, uncertain and non-aOne system

is under iterative learning control, it is very hard to guaran-
tee that the performance of one ILC scheme is better than
that of another one “uniformly” for all iterations. What is
possible and more practical is to look for such indices that
can capture the essential nature of an ILC scheme for “most”
iterations. More rigorously speaking, one ILC scheme is
thought of performing better than another in certain aspect,
if the corresponding index of the former is better than that
of the latter for in.nitely many iterations except for a .-
nite number of iterations. For this purpose, a learning per-
formance index—Q-factor—is introduced, which provides
a rigorous and quanti.ed evaluation criterion for comparing
the convergence speed of sequences generated by di8erent
ILC schemes. A lower Q-factor means a faster convergence
speed for most iterations. Using Q-factor, it is easy to derive
a “characteristic equation” that speci.es the convergence
speed for an iterative learning process.
In most ILC design and analysis, the system dynamic ef-

fect is neglected while a time weighted norm is used. In this
paper, we investigate the relationship between the system
dynamic inNuence and the time-weighted norm. In order to
quantify the dynamic impact to the learning process, we in-
troduce two indices with supreme norm—the global uniform
bound of tracking error in iteration domain, and monotonic-
ity period. The former describes the worst case error bound,
and the latter speci.es the maximum tracking interval in
which the tracking error decreases monotonically in terms
of the supreme norm. By means of these two indices, the
system dynamic impact, which is hidden and suppressed by
the time-weighted norm, is clearly exhibited.
The last issue is rather controversial in ILC. Intuitively, a

higher-order ILC, that employs preceding control informa-
tion of more than one iteration, should be able to improve
learning performance as more of preceding control infor-
mation is used. However, a simple linear combination of
preceding control information may not provide new infor-
mation. Note that most higher-order ILC schemes proposed
hitherto are of linear type. What is more, for a convergent
ILC sequence, in most iterations the latest should be the
most accurate and the rest are less. A linear combination of
less accurate ones may further degrade the performance. To
answer this question, rigorous analysis and fair comparisons
are indispensable. In the last part of this paper we analyze
and compare the learning convergence speed associated with
linear .rst-order and higher-order ILC schemes. Based on
the min–max design and Q-factor, we are able to conduct a

quantitative comparison and reach the following conclusion.
Under the same interval uncertainty and applying the same
min–max design which is robust and optimal, the Q-factor
of ILC sequences of lower-order ILC is lower than that of
higher-order ILC in terms of the time-weighted norm. In the
sequel, the .rst-order ILC achieves the fastest convergence
speed in the iteration domain in the sense of Q-factor.
This paper is organized as follows. The learning con-

trol problem is formulated in Section 2. Section 3 presents
the convergence analysis and robust optimal design for the
.rst-order ILC scheme under interval uncertainty. Section 4
explores the dynamic impact in iteration domain. Section 5
compares the learning convergence speed for higher-order
ILC schemes.

2. Problem formulation

Consider the nonlinear dynamic system (1),

ẋ(t) = f(x(t); u(t); t) x(0) = x0;

y(t) = g(x(t); u(t); t);
(1)

where t ∈ [0; T ]; x(t)∈Rn; y(t)∈R and u∈R, f(·) and g(·)
are partially unknown functions. The system is satisfying
the following assumptions.

Assumption 1. Denoting 
 , Rn × R × [0; T ]; 0¡�16
@g=@u6 �2 and ‖@g=@x‖6 �x; ∀(x; u; t)∈
. Here �1; �2
are known constants and �x is an unknown constant.

Remark 1. @g=@u is equivalent to system direct feed-through
term and represents the system gain. 0¡�16 @g=@u war-
rants no singularity in the system control. @g=@u∈D ,
[�1; �2] indicates the presence of an interval uncertainty in
the system gain; which directly a8ects the control perfor-
mance. One of the objectives of this paper is to develop an
appropriate learning control design so as to achieve both
robustness and optimality in the presence of the interval
uncertainty D.

Assumption 2. Nonlinear function f(x; u; t) is global
Lipschitz continuous with respect to x and u in the
set 
; i.e.;

‖f(x1; u1; t)− f(x2; u2; t)‖6Lf[ ‖x1 − x2‖+ |u1 − u2|];
where Lf is an unknown Lipschitz constant.

Assumption 3. For the given trajectory yr(t); there exists a
unique ur(t) such that

ẋr(t) = f(xr(t); ur(t); t)

yr(t) = g(xr(t); ur(t); t) ∀t ∈ [0; T ]:

Remark 2. Since ur(t) exists uniquely; the uniform conver-
gence of the control pro.le u(t) to ur(t) implies that the
state and output tracking errors will vanish.
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